(x/5)^log_b(5) - (x/6)^log_b(6) = 0

    • zkfcfbzrOP
      link
      English
      1
      edit-2
      8 months ago

      Yes, though I prefer spoilered answers with work (especially since something like Wolfram|Alpha can just spit out the answer here)

      I’m curious about your retracted edit, since I saw your original message had just the correct answer - why 30k?

      • @[email protected]
        link
        fedilink
        2
        edit-2
        8 months ago

        I thought 0 also works so maybe it’s multiples of 30 but then tried 60 and it didn’t work

        • zkfcfbzrOP
          link
          English
          4
          edit-2
          8 months ago
          spoilers

          0 does work as a trivial solution, since 0^a = 0^b always holds, but yea, 30’s the only other one - the key comes down to the fact that a^log(b) = b^log(a) in general, and 30 is what achieves that here

          • @siriusmartM
            link
            28 months ago

            i get why 0 would work, but i dont get how it doesnt show up as a solution when i try to solve for it

            • zkfcfbzrOP
              link
              English
              18 months ago

              In your own work, you divided by x^ln(6) at one point, which would remove any x = 0 solution from your work - before that step x = 0 was still a valid solution to your equations, but after it it wasn’t

            • zkfcfbzrOP
              link
              English
              1
              edit-2
              8 months ago

              Expanding on my reply, here’s a different way to continue your own work that would have yielded both solutions, by avoiding any steps that divide by x:

              solution

              Starting from the third line of your work:

              (x/5)^ln(5) = (x/6)^ln(6)

              x^ln(5) / 5^ln(5) = x^ln(6) / 6^ln(6) → Distribute exponents

              x^ln(5) * 6^ln(6) - x^ln(6) * 5^ln(5) = 0 → Cross multiply, move terms to one side

              x^ln(5) * (6^ln(6) - x^ln(1.2) * 5^ln(5)) = 0 → Factor out x^ln(5)

              Can set each factor to 0:

              x^ln(5) = 0 yields x = 0

              6^ln(6) - x^ln(1.2) * 5^ln(5) = 0

              6^ln(6) / 5^ln(5) = x^ln(1.2) → Add right term to right side, divide by its coefficient

              (5^(ln(6)/ln(5)))^ln(6) / 5^ln(5) = x^ln(1.2) → Convert numerator of left side to have same base as denominator, using change of base formula: log_5(6) = ln(6)/ln(5)

              5^(ln(6)^2 / ln(5)) / 5^ln(5) = x^ln(1.2) → Simplify exponent of numerator slightly

              5^((ln(6)^2 - ln(5)^2) / ln(5)) = x^ln(1.2) → Combine terms on left side, simplify numerator into a single fraction

              5^((ln(6)+ln(5))(ln(6)-ln(5))/ln(5)) = x^ln(1.2) → Factor exponent numerator as difference of squares

              5^(ln(30)ln(1.2)/ln(5)) = x^ln(1.2) → Simplify sum and difference of logs in left exponent numerator

              30^ln(1.2) = x^ln(1.2) → By change of base formula again, ln(30)/ln(5) = log_5(30), so 5^(ln(30)/ln(5)) = 30

              x = 30

  • zkfcfbzrOP
    link
    English
    4
    edit-2
    8 months ago
    commentary/hint

    Not too bad as long as you’re familiar with your exponent and log rules from high school, though goes a bit further with them than most problems

    • zkfcfbzrOP
      link
      English
      18 months ago

      All good - this is pretty much what I did as well.

      • @siriusmartM
        link
        28 months ago

        i showed the question to my friend who isnt particularly bright in maths, he said 30 by just looking at it, i freaked out a bit but it might just have been a lucky guess