• @Heavybell
    link
    511 year ago

    Why is everything RISC-V some low power device, I want a workstation with PCIe 5.0 powered by RISC-V.

        • oo1
          link
          fedilink
          151 year ago

          I’d guess they’d need to figure out whatever apple did with it’s arm chips.
          efficient use of many-cores and probably some fancy caching arrangement.

          It’ll may also be a matter of financing to be able to afford (compete with intel, apple, amd, nvidia) to book the most advanced manufacturing for decent sized batches of more complex chips.

          Once they have proven reliable core/chip designs , supporting more products and a growing market share, I imagine more financing doors will open.

          I’d guess risc-v is mostly financed by industry consortia maybe involving some governments so it might not be about investor finance, but these funders will want to see progress towards their goals. If most of them want replacements for embedded low power arm chips, that’s what they’re going to prioritise over consumer / powerful standalone workstations.

        • @[email protected]
          link
          fedilink
          English
          2
          edit-2
          1 year ago

          At a minimum they’ve got to design a wider issue. Current high-performance superscalar chips like the XuanTie 910 (what this laptop’s SoC are built around) are only triple-issue (3-wide superscalar), which gives a theoretical maximum of 3 ipc per core. (And even by RISC standards, RISC-V has pretty “small” instructions, so 3 ipc isn’t much compared to 3 ipc even on ARM. E.g., RISC-V does not have any comparison instructions, so comparisons need to be composed of at least a few more elementary instructions). As you widen the issue, that complicates the pipelining (and detecting pipeline hazards).

          There’s also some speculation that people are going to have to move to macro-op fusion, instead of implementing the ISA directly. I don’t think anyone’s actually done that in production yet (the macro-op fusion paper everyone links to was just one research project at a university and I haven’t seen it done for real yet). If that happens, that’s going to complicate the core design quite a lot.

          None of these things are insurmountable. They just take people and time.

          I suspect manufacturing is probably a big obstacle, too, but I know quite a bit less about that side of things. I mean a lot of companies are already fabbing RISC-V using modern transistor technologies.

    • oo1
      link
      fedilink
      211 year ago

      I think that’s the whole point of all risc - it saves power over cisc but may take longer to compute some tasks.

      That’d be why things like phones with limited batteries often prefer risc.

      • @[email protected]
        link
        fedilink
        English
        11 year ago

        It definitely could scale up. The question is who is willing to scale it up? It takes a lot less manpower, a lot less investment, and a lot less time to design a low-power core, which is why those have come to market first. Eventually someone’s going to make a beast of a RISC-V core, though.

          • @merthyr1831
            link
            11 year ago

            Excl. Nation-states which have their own strategic reasons- NVidia, Google, Amazon, IBM, almost every single big cloud player are going to begin investing in RISC-V as it matures.

            ARM charges a lot for its licensing and that’s only going up in the near future. x86 is simply too expensive to compete for unless you’re AMD or Intel.

            At some point the Cloud CPU players are gonna jump on RISC for the cost savings, and the prospect of building their own platforms without licensing fees and lack of input on the direction of the ISA.

          • @[email protected]
            link
            fedilink
            11 year ago

            China is the main driver of growth in RISC-V currently. But we need to see how the trade wars will affect that. There was a recent news about RISC-V specifically in this regard.

            We might also see more activity from Intel, Qualcomm and Nvidia.

    • @[email protected]
      link
      fedilink
      91 year ago

      It takes time, as it all is under heavy development. Just since very recently there are risc v sbc available that can run linux - before it was pretty much microcontrollers only. Be patient :)

      • @Heavybell
        link
        11 year ago

        That’s promising at least :)

    • suoko
      link
      fedilink
      71 year ago

      Risc-v is still 50% slower than an unisoc SOC.

    • @merthyr1831
      link
      61 year ago

      RISC-V is advancing pretty quickly. I imagine we’ll see desktop class CPUs within a decade.

    • qaz
      link
      3
      edit-2
      1 year ago

      There is the 64 core, 32-128GB DDR4 Milk-V Pioneer, but it uses PCIe 4.0

    • nickwitha_k (he/him)
      link
      fedilink
      1
      edit-2
      1 year ago

      Me too. Hell, I’d settle for a multi-core RV64GC processor offered as a bare chip and socket since I’ve always wanted to give building a motherboard a try but, the dev systems available seem to have everything soldered :(

  • @[email protected]
    link
    fedilink
    English
    151 year ago

    Does the trackpoint work like an old IBM thinkpad? If so this would be a really neat computer.

    • @[email protected]
      link
      fedilink
      101 year ago

      With RISC-V and ARM I hope so. In the past I feel like they were too bloated and it made them feel worse than a tablet or a laptop.

    • @merthyr1831
      link
      11 year ago

      Loved my netbook back in the day. put major hours into roblox on that bih

  • @[email protected]
    link
    fedilink
    71 year ago

    Does RISC-V have security benefits since it is open source? Is it easier to detect hardware backdoors if it is used instead of x86 or ARM?

    • @[email protected]
      link
      fedilink
      71 year ago

      RISC-V instruction set (ISA) is open source. But the actual implementation (microarchitecture) has no such obligations. And among the implementations that can run Linux, none (that I know) are open source designs.

      With regards to hardware backdoors - no, closed source RISC-V implementations are not easier than x86 or ARM to audit for security.

    • @[email protected]
      link
      fedilink
      6
      edit-2
      1 year ago

      I think the CPU chips themselves are closed source but the architecture is open under MIT so this means anyone can close them

  • @[email protected]
    link
    fedilink
    61 year ago

    Hmmm I wonder if it’s possible to hack together that tiny keyboard together with a Steam Deck…

  • @fuckwit_mcbumcrumble
    link
    English
    51 year ago

    The Pad 4A is a bit more interesting to me. 1280x800 is really awful in 2023. But the pad 4A has a 10" 1920x1200 display which would be so much nicer in a small form factor laptop.

    • @[email protected]
      link
      fedilink
      English
      51 year ago

      While I agree with you with the 16:10 display being nicer, in terms of size. 1280x800 isn’t bad once you take into consideration of screen size. Like the ppi for both displays are in the low 200s. A 1080p 15.6 in display has a lower ppi than both of those.

      • @fuckwit_mcbumcrumble
        link
        English
        41 year ago

        To me it’s less about the PPI and more the ability to fit things on the screen.

        1280x800 is just small enough that that certain elements might not fit on the screen. Or if they do they just barely fit with no wiggle room. 1920x1200 is probably unreadable to even freaks like me (I run 150% scaling on a 16” 4K display) but it gives me the option to turn off/down scaling and actually fit things when needed.

    • @merthyr1831
      link
      11 year ago

      I use a 1280x800 on my steamdeck and honestly its fine for 90% of stuff as long as it can scale properly. Am I the only person who ran a 720p monitor back when people were just getting into 4k?

      • @fuckwit_mcbumcrumble
        link
        English
        31 year ago

        I ran 1280x800 and 1366x768 for years and hated it. After the retina MBP came out and embarrassed everyone I vowed I’d never go back.

        1080p is the minimum I’ll do at this point for a modern device.

  • AutoTL;DRB
    link
    fedilink
    English
    51 year ago

    This is the best summary I could come up with:


    Known as the Lichee Console 4A, the laptop features a display size of just 7 inches, 16GB of memory, and an LM4A TH1520 processor.

    Despite its small size, the Lichee Console 4A packs the features and functionality that you’d generally expect from a mainstream x86 laptop in this price range: LPDDR4X memory, 128GB of eMMC storage, and an optional external NGFF SSD.

    Display-wise, the video resolution of the 7-inch display is 1280 x 800 featuring capacitive touch touchscreen support, plus a mini HDMI port for external monitor output.

    There’s also a 2MP front camera that should suffice for basic web calling.

    Additionally, there’s also a microSD slot reader, which can expand the device’s storage on top of what it already has.

    Other miscellaneous specs include a battery capacity of 3000mAh, RedPoint (seemingly a copy of Lenovo’s TrackPoint), a 72-key keyboard, an aluminum outer shell, and a weight of 650 grams.


    The original article contains 295 words, the summary contains 150 words. Saved 49%. I’m a bot and I’m open source!