• Show that the infinite multiplication (1+1/1)(1+1/2)(1+1/3)... does not converge.
  • zkfcfbzr
    link
    English
    4
    edit-2
    7 months ago
    solution

    The terms can be rewritten as:

    (2/1) * (3/2) * (4/3) * … * ((n+1)/n) * …

    Each numerator will cancel with the next denominator. In total everything cancels, so the answer is the empty product, 1.

    Wait

    Uhm, ignore that. Rather, consider the products we get when multiplying. We get: 2/1. 6/2. 24/6. Etc. That is, we have:

    Π (n = 1 to k) (n+1)/n = (k+1)! / k! = (k+1)k!/k! = k+1

    k+1 clearly goes to infinity as k → ∞, so our product diverges to infinity.

    • @[email protected]
      link
      fedilink
      2
      edit-2
      7 months ago
      solution

      Isn’t this already the result of your 1st formula? As the denominator of the last fraction you wrote down, (n+1)/n, cancels out with the counter of the one right before, n/(n-1), which you didn’t write down. Thus the whole product up to the nth term reads after cancellation of neighbouring counters and denominator pairs (n+1)/1 →∞ when n→∞.

      • zkfcfbzr
        link
        English
        2
        edit-2
        7 months ago
        reply

        Yes - I mostly left the first part in for the humor (it was legitimately my first stab at the problem), but it gives the same result, just in a way that’s a little harder (to me, at least) to see. The cancellation is unbalanced: Each numerator cancels with the next denominator, which necessarily brings with it the next numerator - you’ve always got the next numerator in line, as-is, after any number of canceled pairs. So while everything cancels out in the limit, the product up to n equals n+1, and so the limit of the product is ∞.