• @force
    link
    English
    3
    edit-2
    5 months ago

    Pi isn’t a fraction (in the sense of a rational fraction, an algebraic fraction where the numerator and denominator are both polynomials, like a ratio of 2 integers) – it’s an irrational number, i.e. a number with no fractional form; as opposed to rational numbers, which are defined as being able to be expressed as a fraction. Furthermore, π is a transcendental number, meaning it’s never a solution to f(x) = 0, where f(x) is a non-zero finite-degree polynomial expression with rational coefficients. That’s like, literally part of the definition. They cannot be compared to rational numbers like fractions.

    Every rational number (and therefore every fraction) can be expressed using either repeating decimals or terminating decimals. Contrastly, irrational numbers only have decimal expansions which are both non-repeating and non-terminating.

    Since |r|<1 → ∑[n=1, ∞] arⁿ = ar/(1-r), and 0.999... is equivalent to that sum with a = 9 and r = 1/10 (visually, 0.999... = 9(0.1) + 9(0.01) + 9(0.001) + ...), it’s easy to see after plugging in, 0.999... = ∑[n=1, ∞] 9(1/10)ⁿ = 9(1/10) / (1 - 1/10) = 0.9/0.9 = 1). This was a proof present in Euler’s Elements of Algebra.