Meta has released and open-sourced Llama 3.1 in three different sizes: 8B, 70B, and 405B

This new Llama iteration and update brings state-of-the-art performance to open-source ecosystems.

If you’ve had a chance to use Llama 3.1 in any of its variants - let us know how you like it and what you’re using it for in the comments below!

Llama 3.1 Megathread

For this release, we evaluated performance on over 150 benchmark datasets that span a wide range of languages. In addition, we performed extensive human evaluations that compare Llama 3.1 with competing models in real-world scenarios. Our experimental evaluation suggests that our flagship model is competitive with leading foundation models across a range of tasks, including GPT-4, GPT-4o, and Claude 3.5 Sonnet. Additionally, our smaller models are competitive with closed and open models that have a similar number of parameters.

As our largest model yet, training Llama 3.1 405B on over 15 trillion tokens was a major challenge. To enable training runs at this scale and achieve the results we have in a reasonable amount of time, we significantly optimized our full training stack and pushed our model training to over 16 thousand H100 GPUs, making the 405B the first Llama model trained at this scale.


Official Meta News & Documentation

See also: The Llama 3 Herd of Models paper here:


HuggingFace Download Links

8B

Meta-Llama-3.1-8B

Meta-Llama-3.1-8B-Instruct

Llama-Guard-3-8B

Llama-Guard-3-8B-INT8


70B

Meta-Llama-3.1-70B

Meta-Llama-3.1-70B-Instruct


405B

Meta-Llama-3.1-405B-FP8

Meta-Llama-3.1-405B-Instruct-FP8

Meta-Llama-3.1-405B

Meta-Llama-3.1-405B-Instruct


Getting the models

You can download the models directly from Meta or one of our download partners: Hugging Face or Kaggle.

Alternatively, you can work with ecosystem partners to access the models through the services they provide. This approach can be especially useful if you want to work with the Llama 3.1 405B model.

Note: Llama 3.1 405B requires significant storage and computational resources, occupying approximately 750GB of disk storage space and necessitating two nodes on MP16 for inferencing.

Learn more at:


Running the models

Linux

Windows

Mac

Cloud


More guides and resources

How-to Fine-tune Llama 3.1 models

Quantizing Llama 3.1 models

Prompting Llama 3.1 models

Llama 3.1 recipes


YouTube media

Rowan Cheung - Mark Zuckerberg on Llama 3.1, Open Source, AI Agents, Safety, and more

Matthew Berman - BREAKING: LLaMA 405b is here! Open-source is now FRONTIER!

Wes Roth - Zuckerberg goes SCORCHED EARTH… Llama 3.1 BREAKS the “AGI Industry”*

1littlecoder - How to DOWNLOAD Llama 3.1 LLMs

Bloomberg - Inside Mark Zuckerberg’s AI Era | The Circuit

  • @[email protected]
    link
    fedilink
    English
    163 months ago

    super exciting, but in a way i have kind of “lost interest” in frontier models, since the resources needed to run them is beyond what most people have access to. i mostly see the future in smaller models (like 3.1 8B for example), anyone else share this feeling?

    also unrelated but, i was previously librecat on here (my last instance stopped working)

    • @[email protected]
      link
      fedilink
      English
      33 months ago

      Agreed - 8b has enough magic to hold a conversation and do small tasks, such as breaking up a large task or picking out key details, which can then be fed into more small models (maybe even more narrowly fine-tuned ones)

      180b isn’t enough to replace all the other pieces of a system that you need for autonomous action or memory

      I think 8b models are enough to make AGI possible if we stack them just right. They’re enough to fill in most of the gaps to make practical things too, and they’re not that far off for everything else