Hi, I have never build a PC before, that is why I am asking you for your help and suggestions. I have informed (or misinformed) myself about a few aspects of building a PC. I will give my reasoning why I chose each part, and let you decide why I am wrong.

Usage:

The goal of this build is to create a Gaming PC which can play most games at least at lower resolutions and at sufficient frame rate. I plan to build this PC with future software requirements in mind, to reduce e-waste and to leave room for possible upgrades. This PC should support Coreboot to allow for firmware updates, even after the official firmware support has stopped. This machine will run Linux as the main OS and probably Dasharo as the Coreboot-distribution. The main use is playing games and emulation, but I also intend to use it for virtualisation.

Components:

  • Motherboard: Pro Z790-P Wifi (DDR5 Variant)
  • CPU: Intel Core i5-13600KF (Alder/Raptor_Lake-S)
  • CPU-Cooler: Scythe Fuma 3 67.62 CFM CPU Cooler (4-30 dB)
  • GPU: XFX Speedster QICK 309 Radeon RX 7600 XT 16 GB Video Card
  • RAM: G.Skill Ripjaws S5 32 GB (2 x 16 GB) DDR5 5600 (CL 28)
  • Storage: Samsung 980 Pro 2 TB M.2-2280 PCIe 4.0 X4 NVME Solid State Drive
  • PSU: SeaSonic FOCUS Plus 650 Gold 650 W 80+ Gold Certified Fully Modular ATX Power Supply

Why did I choose those parts?

Motherboard:

  • The main two reasons why I choose the Z790-P are, that the motherboard needs to support Coreboot and that it is DDR5 compatible.
  • I could not care less if the motherboard supports Wifi or Bluetooth, since the PC is not going to leave my desk, but I will not complain for having it.

CPU:

  • Since I already decided on a motherboard, the manufacturer decided the CPU-brand for me. In this case Intel. The CPU-socket only allows for microarchitectures Alder and Raptor Lake-S, so my choice is limited. Intels 13th and 14th generation CPUs have many reported issues. Intel reported that many of those issues are due to faulty voltage configuration in the motherboard bios, which cause the CPU to degrade at an accelerated pace. They are due to release a microcode patch mid-august, which reportedly fixes the issue without a significant performance loss. Obviously, this patch will not fix already damaged chips. Another problem is, that they had some issues while manufacturing these chips in 2023, which caused oxidation and therefore degradation.
  • Generally you want more from everything, cores, threads and core clock, except power usage.
  • You also have the choice between a CPU with integrated graphics or without. To save the environment and my bank account I will choose one without it. For Intel that is every CPU with the “F” designation. As thingsiplay and felsiq have pointed out there can appear several issues, when building a system without a integrated GPU. One which is, that it becomes harder to debug issues, since you can not just unplug your GPU, to test if the GPU drivers are at fault.

CPU-Cooler:

  • Check if the TDP matches your CPU, e.g. >=125 W for 125 W.
  • Check if it matches your motherboard and case, i.e. everything fits.
  • Lastly, make sure it is not to loud.

GPU:

  • Main OS is Linux, so I will spare myself the pain and choose AMD over Nvidia.
  • More demanding games use more video memory. I have read that 8 GB often is not enough anymore.

RAM:

  • Virtualisation often needs a lot of resources i.e. RAM.
  • For optimal performance your RAM-speed should match your CPU. Any more and you waste money, any less and you create a bottleneck. Since the i5 only has 5600 MT/s, any more is wasted.

Storage:

  • Since most games today use around 60-150 GB, this PC will need a lot of storage. About thirteen 150 GB games can be stored on a 2 TB drive. I hope this will suffice.

Power supply unit:

  • Deciding factors are form factor and power. You can not use your PSU, if it either does not fit in your PC-case or does not have enough juice to power your other components.
  • Your PSU should have a few more 20-30 % clearance in case of a spike. I think a 650 W PSU should be enough for a workload of 490 W idle. Please, correct me, if I am wrong.
  • Some people recommend buying a PSU with more power than needed to allow for upgrades with higher power usage, but apparently the PSU will not run efficiently in this case. I have read that a PSU should be most efficient at idle hardware usage to maximize power savings. E.g. do not buy a 1000 W PSU, when you only use around 400 W at idle.
  • Also important are the +12V-rails. You should make sure the supply at least 24 A. Lastly you should check which power plugs the PSU will/can use.

Since I plan something special for the PC-case, it will not be part of this post. I hope this post can be used by others in the future, as a reference for building a Linux PC.

PS: This is my first post on lemmy. I am sorry for any formatting errors. I hope the post is legible.

Edit:

  • added links for explanation
  • fixed some grammatical errors
  • added suggestions from the comments

It is getting late here. I will look into a substitute for intel tomorrow (8 hours from the latest edit) and add this here.

  • ffhein
    link
    11 month ago

    I think a 650 W PSU should be enough for a workload of 490 W idle. Please, correct me, if I am wrong.

    You mean 490W under load, right? One would hope that your computer uses less than 100W idle, otherwise it’s going to get toasty in your room :) I would say this depends on how much cheaper a 650W PSU is, and how likely it is you’ll upgrade your GPU. It really sucks saving up for a ridiculously expensive new GPU and then realizing you also need to fork out an additional €150 to replace your fully functional PSU. On the other hand, going from 650W to 850W might double the cost of the PSU, and it would be a waste of money if you don’t buy a high end GPU in the future. For PSU, check out https://cultists.network/140/psu-tier-list/ .If you’re buying a decent quality unit I wouldn’t worry about efficiency loss from running at a lower % of its rated max W, I doubt it’s going to be enough to be noticeable on your power bill.

    I’ve always had Nvidia GPUs and they’ve worked great for me, though I’ve stayed with X11 and never bothered with Wayland. If you’re conscious about power usage, many cards can be power limited + overclocked to compensate. For example I could limit my old RTX3080 to 200W (it draws up to 350W with stock settings) and with some clock speed adjustments I would only lose about 10% fps in games, which isn’t really noticeable if you’re still hitting 120+ fps. My current RTX3090 can’t go below 300W (stock is 370W) without significant performance loss though.

    If you have any interest in running AI stuff, especially LLM (text generation / chat), then get as much VRAM as you possibly can. Unfortunately I discovered local LLMs just after buying the 3080, which was great for games, and realized that 12GB VRAM is not that much. CUDA (i.e. Nvidia GPUs) is still dominant in AI, but ROCm (AMD) is getting more support so you might be able to run some things at least.

    Another mistake I made when speccing my PC was to buy 2*16GB RAM. It sounded like a lot at the time, but once again when dealing with LLMs there are models which are larger than 32GB that I would like to run with partial offloading (splitting work between GPU and CPU, though usually quite slow). Turns out that DDR5 is quite unstable, and I don’t know if it’s my motherboard or the Ryzen CPU which is to blame, but I can’t just add 2 more RAM. I.e. there are 4 slots, but it would run at 3800MHz instead of the 6200Mhz that the individual sticks are rated for. Don’t know if Intel mobos can run 4x DDR5 sticks at full speed.

    And a piece general advice, in case this isn’t common knowledge at this point; Be wary when trying to find buying advice using search engines. Most of the time it’ll only give you low quality “reviews” which are written only to convince readers to click on their affiliate links :( There are still a few sites which actually test the components and not just AI generate articles. Personally I look for tier lists compiled by users (Like this one for mobos), and when it comes to reviews I tend to trust those which get very technical with component analyses, measurements and multiple benchmarks.