It is done by allowing fluid to flow through passages between chambers separated with a piston. Your car’s shocks and struts work the same way. There are also ones with external reservoir that may allow for more travel or that can be pressurized to alter resistance.
The fluid pushes on a reservoir of nitrogen that keeps the plane from bottoming out. It is a progressive pressure system, so it gets harder to move the more force is applied.
Ah! Yes, you didn’t mention the pneumatic component. I thought you just meant between two bodies of oil, which would only provide damping and some added moment.
Depends on the aircraft if it has gas or hydraulic shock absorbers. Some lightweight aircraft just have torsion based shock absorption.
How would hydraulic ones work? The entire concept there is that liquids are almost incompressible.
It is done by allowing fluid to flow through passages between chambers separated with a piston. Your car’s shocks and struts work the same way. There are also ones with external reservoir that may allow for more travel or that can be pressurized to alter resistance.
You’d still need some kind of restoring force. Visibly, some cars use metal springs for at least part of that.
The fluid pushes on a reservoir of nitrogen that keeps the plane from bottoming out. It is a progressive pressure system, so it gets harder to move the more force is applied.
Ah! Yes, you didn’t mention the pneumatic component. I thought you just meant between two bodies of oil, which would only provide damping and some added moment.