Abstract

For most people, visual imagery is an innate feature of many of our internal experiences, and appears to play a critical role in supporting core cognitive processes. Some individuals, however, lack the ability to voluntarily generate visual imagery altogether – a condition termed “aphantasia”. Recent research suggests that aphantasia is a condition defined by the absence of visual imagery, rather than a lack of metacognitive awareness of internal visual imagery. Here we further illustrate a cognitive “fingerprint” of aphantasia, demonstrating that compared to control participants with imagery ability, aphantasic individuals report decreased imagery in other sensory domains, although not all report a complete lack of multi-sensory imagery. They also report less vivid and phenomenologically rich autobiographical memories and imagined future scenarios, suggesting a constructive role for visual imagery in representing episodic events. Interestingly, aphantasic individuals report fewer and qualitatively impoverished dreams compared to controls. However, spatial abilities appear unaffected, and aphantasic individuals do not appear to be considerably protected against all forms of trauma symptomatology in response to stressful life events. Collectively, these data suggest that imagery may be a normative representational tool for wider cognitive processes, highlighting the large inter-individual variability that characterises our internal mental representations.

HTML link.

  • Drew Got No ClueOPM
    link
    English
    11 year ago

    My highlight from the discussion:

    Notably, aphantasic individuals reported significantly reduced imagery across all sensory modalities (and not just visual). However, only 26.22% of aphantasic participants reported a total absence of multi-sensory imagery altogether, raising important questions about the primary aetiology of aphantasia and suggesting possible sub-categories of aphantasia within a heterogeneous group. Aphantasic individuals’ episodic memory and ability to imagine future events were also reported to be significantly reduced compared to the two control populations. These findings attest to the recently established functional and anatomical overlap in brain networks supporting the flexible, constructive simulation of episodic events (whether they be real past events or hypothetical future events), and suggest that visual imagery may be an essential and unifying representational format potentiating these processes.

    Interestingly, our data aligns with that of previous studies demonstrating unaffected spatial imagery abilities in aphantasia, suggesting an important distinction between object imagery (low-level perceptual features of objects and scenes) and spatial imagery (spatial locations and relations in mental images). This distinction is indeed reflected at a neural level, with disparate brain pathways used for perceptual object processing and spatial locations, respectively. Strikingly, cognitive differences in aphantasia were not limited to processes where visual imagery is typically deliberate and volitional, with aphantasic individuals in our study reporting significantly less frequent and less vivid instances of spontaneous imagery such as night dreams. These data suggest that any cognitive function (voluntary or involuntary) involving a sensory visual component is likely to be reduced in aphantasic individuals, and it is this generalised reduction in the sensory simulation of complex events and scenes that is most striking in aphantasia.