• @RoyaltyInTraining
    link
    1021 year ago

    Makes sense, cause double can represent way bigger numbers than integers.

      • @[email protected]
        link
        fedilink
        181 year ago

        Only to 2^54. The amount of integers representable by a long is more. But it can and does represent every int value correctly

          • @Aux
            link
            151 year ago

            C is irrelevant because this post is about Java and in Java long is 64 bits.

          • voxel
            link
            fedilink
            2
            edit-2
            1 year ago

            you should never be using these types in c anyway, (u?)int(8/16/32/64)_t are way more sane

    • @[email protected]
      link
      fedilink
      241 year ago

      Also because if you are dealing with a double, then you’re probably dealing with multiple, or doing math that may produce a double. So returning a double just saves some effort.

    • @[email protected]
      link
      fedilink
      91 year ago

      Yeah it makes sense to me. You can always cast it if you want an int that bad. Hell just wrap the whole function with your own if it means that much to you

      (Not you, but like a hypothetical person)

      • @RoyaltyInTraining
        link
        21 year ago

        A double can represent numbers up to ± 1.79769313486231570x10^308, or roughly 18 with 307 zeroes behind it. You can’t fit that into a long, or even 128 bits. Even though rounding huge doubles is pointless, since only the first dozen digits or so are saved, using any kind of Integer would lead to inconsistencies, and thus potentially bugs.

    • @[email protected]
      link
      fedilink
      11 year ago

      How does that work? Is it just because double uses more bits? I’d imagine for the same number of bits, you can store more ints than doubles (assuming you want the ints to be exact values).

        • @[email protected]
          link
          fedilink
          4
          edit-2
          1 year ago

          No, I get that. I’m sure the programming language design people know what they are doing. I just can’t grasp how a double (which has to use at least 1 bit to represent whether or not there is a fractional component) can possibly store more exact integer vales than an integer type of the same length (same number of bits).

          It just seems to violate some law of information theory to my novice mind.

          • @[email protected]
            link
            fedilink
            81 year ago

            It doesn’t. A double is a 64 bit value while an integer is 32 bit. A long is a 64 bit signed integer which stores more exact integer numbers than a double.

            • @[email protected]
              link
              fedilink
              1
              edit-2
              1 year ago

              Technically, a double stores most integers exactly ( up until a certain value ) and then approximations of integers of much larger sizes. A long stores all its integers exactly but cannot handle values nearly as large.

              For most real world data ranges, they are both going to store integers exactly.

          • @EvilHankVenture
            link
            3
            edit-2
            1 year ago

            It doesn’t store more values bit for bit, but it can store larger values.

            • @[email protected]
              link
              fedilink
              1
              edit-2
              1 year ago

              I don’t think that’s possible. Representing more exact ints means representing larger ints and vice versa. I’m ignoring signed vs. unsigned here as in theory both the double and int/long can be signed or unsigned.

              Edit: ok, I take this back. I guess you can represent larger values as long as you are ok that they will be estimates. Ie, double of N (for some very large N) will equal double of N + 1.

            • @[email protected]
              link
              fedilink
              11 year ago

              I agree with all that. But I’m talking about exact integer values as mentioned in the parent.

              I just think this has to be true: count(exact integers that can be represented by a N bit floating point variable) < count(exact integers that can be represented by an N bit int type variable)

          • @Akagigahara
            link
            11 year ago

            I would need to look into the exact difference of double vs integer to know, but a partially educated guess is that they are referring to Int32 vs double and not Int64, aka long. I did a small search and saw that double uses 32 bits for the whole numbers and the others for the decimal.

            • @[email protected]
              link
              fedilink
              11 year ago

              Yeah, that was my guess too. But that just means they could return a long (or whatever the 64 bit int equivalent in java is) instead of an int.

              • @Akagigahara
                link
                11 year ago

                Okay, so I dug in a bit deeper. Doubles are standardized as a 64 bit bundle that is divided into 1 signed bit, 11 exponetioal bits and 52 bits for decimal. It’s quite interesting. As to how it works indepth, I probably will try to analyze a bit conversion if I can try something

          • @[email protected]
            link
            fedilink
            11 year ago

            I’m going to guess here (cause I feel this community is for learning)…
            Integers have exactness. Doubles have range.
            So if MAX_INT + 1 is possible, then ~(MAX_INT + 1) is probably preferable to an overflow or silent MIN_INT.

            But Math.ceil probably expects a float, because it is dealing with decimals (or similar). If it was an int, rounding wouldn’t be required.
            So if Math.ceil returned and integer, then it could parse a float larger than INT_MAX, which would overflow an int (so error, or overflow). Or just return a float