Hello, we are making a thesis where we use MOSFETs as an alternative radiation detector. So to explain it, it works when the mosfet is irradiated with an external radiation source; its voltage threshold increases, which will be used to determine the radiation dose. I’m currently asking for help on how we measure the voltage threshold. BTW, we are using an n-channel MOSFET (model: IRFP250NPbF). Also in the datasheet provided by the manufacturer, it says here VGS(th)/Gate Threshold Voltage Min: 2.0 ––– Max: 4.0 V. There is a condition here with VDS = VGS, ID = 250 A. Does this mean that to measure the VGS, we need to first satisfy the conditions? To measure the voltage threshold, what node will we use to measure the VGS (th)? Is it at the drain to the source terminal or still at the gate to the source terminal? Feel free to share your thoughts, if you have any. I would also like to add that we have already tried to supply a voltage at the gate with respect to the source terminal. We use a 4 V supply voltage, and when we tried to measure the VDS (drain to source voltage), there was a voltage drop, so we’ve got a 3.5 V. Also, we are using an Arduino to measure its voltage and a multimeter for checking.

  • @[email protected]
    link
    fedilink
    English
    2
    edit-2
    1 year ago

    Interesting, I’ve never thought of doing it exactly this way. Usually I see high surface area PIN junctions used to detect particle impact either by reverse biasing the junction or by directly measuring induced voltage. The amplification stage is not so easy. This is for particle counting and energy measurement though.

    What kind of radiation are you measuring? Gamma I guess?

    I guess the first thing that comes to mind is that for a given signal, as Vgs increases perhaps the on-resistance at a given voltage does too? If so, it might be easy to measure the voltage drop across the MOSFET on resistance and how it changes with dose.

    If I think of anything else though, I’ll let you know!

    Edit: I suppose you could also use an R/2R network to provide an increasing voltage to the MOSFET base, and measure the point where the output reaches some threshold, a direct measurement of Vgs. That should be pretty easy using one full output port of an Arduino and one of the ADCs.