So helium is a limited resource. Okay gotcha. So why not take two hydrogen atoms. Take their protons and neutrons. And just fucking start squeezing them together until you get helium?

And I don’t mean in the same way you get H2. Those are still separate from each other.

  • @[email protected]
    link
    fedilink
    1299 months ago

    This can be done, it’s called nuclear fusion and the sun does it constantly. The practical limitation is, largely, overcoming the electrostatic force.

    Basically, because the atoms are similarly charged, squeezing them together is like trying to push together the North sides of two magnets: they repel each other. It takes a massive amount of energy to squeeze them together hard enough to overcome that repulsion, fortunately the sun has enough energy to do this fairly easily. It is much more difficult for humans to do.

    • @knightmare1147
      link
      349 months ago

      … I feel like you just perfectly eli5 nuclear fusion. I’m using this example next time it comes up.

    • tate
      link
      fedilink
      249 months ago

      I can tell you know this, I’m just tacking it on for those who don’t:

      Why do the nuclei stick together at all, once you’ve pushed them together? Because the nuclear force, which is attractive instead of repulsive, is just a little bit stronger. OK, so why then doesn’t the nuclear force just pull all atoms together? Because it is short range, and only works once the nuclei are “touching.”

        • @[email protected]
          link
          fedilink
          29 months ago

          The repulsive force is electromagnetism while the attractive force is an exchange of mesons between the atoms.

          It is different forces with different ways of interacting on objects.

          This is the chatGPT answer I’m basing my answer on:

          "The concept of a force being both stronger and short-range might seem counterintuitive at first, but it’s a fundamental aspect of how forces operate in the quantum world, particularly within the nucleus of an atom. The force being referred to here is the strong nuclear force, also known as the strong force or strong interaction, which is one of the four fundamental forces in physics.

          The strong nuclear force is indeed much stronger than electromagnetism (the force that repels positively charged protons from each other) but it operates over a very short range. Here’s a more detailed explanation:

          1. Strength: The strong force is the strongest of the four fundamental forces. Its strength ensures that it can overcome the electromagnetic repulsion between protons within the nucleus. Without the strong force, the protons would repel each other and the nucleus would disintegrate.

          2. Range: The strong force only acts over very short distances, approximately 1 femtometer (1 fm, or (10^{-15}) meters), which is roughly the diameter of a large nucleus. Beyond this range, the force drops off very rapidly, becoming negligible compared to electromagnetic forces. This is why atomic nuclei can be stable: within the nucleus, the strong force is dominant and keeps the protons and neutrons together; outside the nucleus, its influence is minimal, so atoms do not “stick” to each other due to the strong force.

          The short-range nature of the strong force is due to the mechanism by which it operates, involving the exchange of particles called mesons between nucleons (protons and neutrons). This particle exchange can be thought of as the “glue” that holds the nucleus together, but this “glue” only works over very short distances.

          To understand how a force can be both stronger and short-range, it’s helpful to compare it with gravity, which is much weaker but has an infinite range. Gravity affects objects no matter how far apart they are, although its effect diminishes with distance. In contrast, the strong force has a much greater effect but only over a very short range. This difference in behavior is due to the different properties and mechanisms governing these forces. "

          Hope this helps, it is not really my domain so maybe someone can ELI5 better for us !

    • @[email protected]
      link
      fedilink
      39 months ago

      So does the sun just have huge amounts of helium? Where is it getting all that helium? Can we have some

      • @[email protected]
        link
        fedilink
        English
        19
        edit-2
        9 months ago

        It’s making it, from the tons of hydrogen it has in the fusion process. The energy and the reason stars even do this is because all of that mass that close together spontaneously does that; starts fusing.

        We can’t have any, because a star will use up all the hydrogen to make helium, then start using all of the helium to make carbon and oxygen. Then start to make…

        This is overly simplified and it varies from star to star (the more massive the star, the longer it churns through “making” elements into more “complex” elements) until its core is all iron, at which point fusion becomes a net negative.

        From there other things can happen like novae. All throughout this life process though, that “elemental conversion” is happening faster on the outside as opposed to the core, and stellar winds do blow off heavier elements that enrich the interstellar medium.

        We need a shovel that can plunge into the sun’s core if we want its helium, TL;DR.

        • @T156
          link
          English
          39 months ago

          But not too patient, or else it’ll make that helium into something else.