@[email protected]M to Climate - truthful information about climate, related activism and [email protected]English • 10 months ago
@[email protected]M to Climate - truthful information about climate, related activism and [email protected]English • 10 months ago
The article doesn’t go into it, but a key advantage they have is that heat pumps move heat, rather then trying to generate it. So they can move a lot more heat into your house than would be generated by running the electricity they use through a resistor. This makes them effectively more than 100% efficient (the exact amount depends on temperature) as compared with burning a fuel or resistive heat.
Nice. Saskatchewan is very cold though (about 6000 heating deg days at 18C where I am and can regularly go under -30C in winter), so 200% would be pretty reasonable for a typical heat pump. As a comparison, Tromsø, in very north Norway is 5600 heating deg days.
As a warm blooded, middle east dwelling humanoid, WTF is ‘6000 heating deg days’?
I have concluded that the 6000 is not days in a year or degrees of temperature.
To determine heating degree days for your area, you set a baseline temperature (18C is kind of standard in Canada) take the average temperature on each day, and sum the difference between that and the baseline temperature for every day of the year (zero if temp is above baseline). So if the average temp one day was -10C, it would be a 28 heating degree day.
It allows approximation of building heating demand. Some standards (Passive House) use heating degree hours for finer detail, which makes sense because there can be fairly significant day/night temperature swings.
Here’s a site where you can calculate what your location is. And here’s what Wikipedia says.
Huh, TIL…