[Image description:
Screenshot of terminal output:

~ ❯ lsblk
NAME           MAJ:MIN RM   SIZE RO TYPE  MOUNTPOINTS
sda              8:0    1  62.5M  0 disk  
└─topLuks      254:2    0  60.5M  0 crypt 
  └─bottomLuks 254:3    0  44.5M  0 crypt

/end image description]

I had no idea!

If anyone else is curious, it’s pretty much what you would expect:

cryptsetup -y -v luksFormat /dev/sda
cryptsetup open /dev/sda topLuks
cryptsetup -y -v luksFormat /dev/mapper/topLuks
cryptsetup open /dev/mapper/topLuks bottomLuks
lsblk

Then you can make a filesystem and mount it:

mkfs.ext4 /dev/mapper/bottomLuks
mount /dev/mapper/bottomLuks ~/mnt/embeddedLuksTest

I’ve tested putting files on it and then unmounting & re-encrypting it, and the files are indeed still there upon decrypting and re-mounting.

Again, sorry if this is not news to anyone else, but I didn’t realise this was possible before, and thought it was very cool when I found it out. Sharing in case other people didn’t know and also find it cool :)

  • Max-P
    link
    fedilink
    599 months ago

    Yeah, LUKS and most block level overlays just don’t care. That’s what good abstraction layers do for you!

    You can LUKS on a disk image mounted over SSHFS that itself resides on a Ceph cluster and mounted over iSCSI for all it cares. Is it a block device? Yes? Good to go.

    You can even LUKS a floppy if you want. Or a CD.

    • @hperrin
      link
      339 months ago

      You wouldn’t LUKS a floppy?

    • @[email protected]
      link
      fedilink
      English
      69 months ago

      I remember years ago investigating alternatives to VMware vSAN and doing hyperconverged storage clusters in Red Hat with glusterFS in top of a couple of other layers. Feels rickety as heck putting it all together but it works well. Hard sell for “normal” people who expect to hit a Next button and get some pretty graphical chart though.