• @[email protected]
    link
    fedilink
    441 year ago

    2 may be the only even prime - that is it’s the only prime divisible by 2 - but 3 is the only prime divisible by 3 and 5 is the only prime divisible by 5, so I fail to see how this is unique.

  • @EatBorekYouWreck
    link
    English
    421 year ago

    Even vs odd numbers are not as important as we think they are. We could do the same to any other prime number. 2 is the only even prime (meaning it is divisible by 2) 3 is the only number divisible by 3. 5 is the only prime divisible by 5. When you think about the definition of prime numbers, this is a trivial conclusion.

    Tldr: be mindful of your conventions.

    • @alvvayson
      link
      13
      edit-2
      1 year ago

      Yes, but not really.

      With 2, the natural numbers divide into equal halves. One of which we call odd and the other even. And we use this property a lot in math.

      If you do it with 3, then one group is going to be a third and the other two thirds (ignore that both sets are infinite, you may assume a continuous finite subset of the natural numbers for this argument).

      And this imbalance only gets worse with bigger primes.

      So yes, 2 is special. It is the first and smallest prime and it is the number that primarily underlies concepts such as balance, symmetry, duplication and equality.

      • @EatBorekYouWreck
        link
        English
        81 year ago

        But why would you divide the numbers to two sets? It is reasonable for when considering 2, but if you really want to generalize, for 3 you’d need to divide the numbers to three sets. One that divide by 3, one that has remainder of 1 and one that has remainder of 2. This way you have 3 symmetric sets of numbers and you can give them special names and find their special properties and assign importance to them. This can also be done for 5 with 5 symmetric sets, 7, 11, and any other prime number.

        • @[email protected]
          link
          fedilink
          41 year ago

          Not sure about how relevant this in reality, but when it comes to alternating series, this might be relevant. For example the Fourier series expansion of cosine and other trig function?

          • @EatBorekYouWreck
            link
            English
            3
            edit-2
            1 year ago

            But then it is more natural to use the complex version of the Fourier series, which has a neat symmetric notation

            • @[email protected]
              link
              fedilink
              11 year ago

              True, but normally, you’d introduce trig functions before complex numbers. Anyhow: I appreciate the meme and the complete over the top discussion about it :D

        • @alvvayson
          link
          21 year ago

          Then you have one set that contains multiples of 3 and two sets that do not, so it is not symmetric.

          • @rbhfd
            link
            51 year ago

            You’d have one set that are multiples of 3, one set that are multiples of 3 plus 1, and one stat that are multiples of 3 minus 1 (or plus 2)

            • @alvvayson
              link
              01 year ago

              How do you people even math.

              You might as well use a composite number if you want to create useless sets of numbers.

          • @EatBorekYouWreck
            link
            English
            11 year ago

            Not intentionally, but yes group rise in many places unexpectedly. That’s why they’re so neat

    • @Gap
      link
      401 year ago

      It is but if feels wrong

    • °˖✧ ipha ✧˖°
      link
      2
      edit-2
      1 year ago

      It pretends to be prime and we all go along with it to avoid hurting its feeling.

  • Aatube
    link
    fedilink
    81 year ago

    I don’t get it, why does adding a hand move to the next prime?

    • @[email protected]
      link
      fedilink
      121 year ago

      🚨 NERD ALERT🚨

      Go define a vector space, nerd.

      Go compute the p value of you being cool

      Go integrate f(x)= 1/x on the domain (-1,1)

      This is meme-ville population: me

      Take a hike.

      • @EatBorekYouWreck
        link
        English
        3
        edit-2
        1 year ago
        • let V be you mom’s vagina, a vector space over the field of pubes. We define my d as a vector such that d is in V. Thus my dick is in your mom’s vagina.

        • In this vector space p values are not defined, but I can assure you that my pp is > 9000.

        • The integral of f(x)=1/x from -1 to 1 does not converge, just like how your father is never coming back from buying milk. The principal value of that integral tho is 0, just like the amount of hugs you got as a kid.

        • math is cool, you just too stupid to get it.

      • Aatube
        link
        fedilink
        11 year ago

        what why i’m serious i don’t get why the hands decrement the numbers

    • Aesthesiaphilia
      link
      fedilink
      51 year ago

      Pretty sure that when we plug in a correction factor for the relative age of the Fediverse userbase, “today’s lucky 10,000” becomes more like “today’s lucky 10 million”

    • @[email protected]
      link
      fedilink
      32
      edit-2
      1 year ago

      They’re not prime. By definition primes have two prime factors. 1 and the number itself. 1 is divisible only by 1. 0 has no prime factors.

      • @[email protected]
        link
        fedilink
        161 year ago

        Commonly primes are defined as natural numbers greater than 1 that have only trivial divisors. Your definition kinda works, but 1 can be infinitely many prime factors since every number has 1^n with n ∈ ℕ as a prime factor. And your definition is kinda misleading when generalising primes.

        • @[email protected]
          link
          fedilink
          9
          edit-2
          1 year ago

          Isn’t 1^n just 1? As in not a new number. I’d argue that 1*1==1*1*1. They’re not some subtly different ones. I agree that the concept of primes only becomes useful for natural numbers >1.
          How is my definition misleading?

          • @[email protected]
            link
            fedilink
            3
            edit-2
            1 year ago

            It is no new number, though you can add infinitely many ones to the prime factorisation if you want to. In general we don’t append 1 to the prime factorisation because it is trivial.

            In commutative Algebra, a unitary commutative ring can have multiple units (in the multiplicative group of the reals only 1 is a unit, x*1=x, in this ring you have several “ones”). There are elemrnts in these rings which we call prime, because their prime factorisation only contains trivial prime factors, but of course all units of said ring are prime factors. Hence it is a bit quirky to define ordinary primes they way you did, it is not about the amount of prime factors, it is about their properties.

            Edit: also important to know: (ℝ,×), the multiplicative goup of the reals, is a commutative, unitary ring, which happens to have only one unit, so our ordinary primes are a special case of the general prime elements.

            • @[email protected]
              link
              fedilink
              0
              edit-2
              1 year ago

              There is multiple things wrong here.

              1. 1 is not a prime number because it is a unit and hence by definition excluded from being a prime.

              2. You probably don’t mean units but identity elements:

              • A unit is an element that has a multiplicative inverse
              • An identity element is an element 1 such that 1x =x1 = x for all x in your ring

              There are more units in R than just 1, take for example -1(unless your ring has characteristic 2 in which case thi argument not always works; however for the case of real numbers this is not relevant). But there is always just one identity element, so there is at most one “1” in any ring. Indeed suppose you have two identities e,f. Then e = ef = f because e,f both are identities.

              1. The property “their prime factorisaton only contains trivial prime factors” is a circular definition as this requires knowledge about “being prime”. A prime (in Z) is normally defined as an irreducible element, i.e. p is a prime number if p is not a unit and p=ab implies that either a or b is a unit (which is exactly the property of only having the factors 1 and p itself (up to a unit)).

              2. (R,×) is not a ring (at least not in a way I am aware of) and not even a group (unless you exclude 0).

              3. What are those “general prime elements”? Do you mean prime elements in a ring (or irreducible elements?)? Or something completely different?

              • @[email protected]
                link
                fedilink
                01 year ago

                You’re mostly right, i misremembered some stuff. My phone keyboard or my client were not capable of adding a small + to the R. With general prime elements I meant prime elements in a ring. But regarding 3.: Not all reducible elements are prime nor vice versa.

                • @[email protected]
                  link
                  fedilink
                  11 year ago

                  That’s why I wrote prime number instead of prime element to not add more confusion. I know that in general prime and irreducible are not equivalent.