• @pyre
    link
    English
    6
    edit-2
    6 months ago

    i don’t think any number system can be safe from infinite digits. there’s bound to be some number for each one that has to be represented with them. it’s not intuitive, but that’s because infinity isn’t intuitive. that doesn’t mean there’s a problem there though. also the arguments are so simple i don’t understand why anyone would insist that there has to be a difference.

    for me the simplest is:

    1/3 = 0.333…

    so

    3×0.333… = 3×1/3

    0.999… = 3/3

      • @pyre
        link
        English
        26 months ago

        honestly that seems to be the only argument from the people who say it’s not equal. at least you’re honest about it.

        by the way I’m not a mathematically adept person. I’m interested in math but i only understand the simpler things. which is fine. but i don’t go around arguing with people about advanced mathematics because I personally don’t get it.

        the only reason I’m very confident about this issue is that you can see it’s equal with middle- or high-school level math, and that’s somehow still too much for people who are too confident about there being a magical, infinitely small number between 0.999… and 1.

        • @[email protected]
          link
          fedilink
          English
          16 months ago

          to be clear I’m not arguing against you or disagreeing the fraction thing demonstrates what you’re saying. It just really bothers me when I think about it like my brain will not accept it even though it’s right in front of me it’s almost like a physical sensation. I think that’s what cognitive dissonance is. Fortunately in the real world this has literally never come up so I don’t have to engage with it.

          • @pyre
            link
            English
            16 months ago

            no, i know and understand what you mean. as i said in my original comment; it’s not intuitive. but if everything in life were intuitive there wouldn’t be mind blowing discoveries and revelations… and what kind of sad life is that?

    • Tlaloc_Temporal
      link
      fedilink
      English
      -3
      edit-2
      6 months ago

      Any my argument is that 3 ≠ 0.333…

      EDIT: 1/3 ≠ 0.333…

      We’re taught about the decimal system by manipulating whole number representations of fractions, but when that method fails, we get told that we are wrong.

      In chemistry, we’re taught about atoms by manipulating little rings of electrons, and when that system fails to explain bond angles and excitation, we’re told the model is wrong, but still useful.

      This is my issue with the debate. Someone uses decimals as they were taught and everyone piles on saying they’re wrong instead of explaining the limitations of systems and why we still use them.

      For the record, my favorite demonstration is useing different bases.

      In base 10: 1/3 0.333… 0.333… × 3 = 0.999…

      In base 12: 1/3 = 0.4 0.4 × 3 = 1

      The issue only appears if you resort to infinite decimals. If you instead change your base, everything works fine. Of course the only base where every whole fraction fits nicely is unary, and there’s some very good reasons we don’t use tally marks much anymore, and it has nothing to do with math.

      • @pyre
        link
        English
        96 months ago

        you’re thinking about this backwards: the decimal notation isn’t something that’s natural, it’s just a way to represent numbers that we invented. 0.333… = 1/3 because that’s the way we decided to represent 1/3 in decimals. the problem here isn’t that 1 cannot be divided by 3 at all, it’s that 10 cannot be divided by 3 and give a whole number. and because we use the decimal system, we have to notate it using infinite repeating numbers but that doesn’t change the value of 1/3 or 10/3.

        different bases don’t change the values either. 12 can be divided by 3 and give a whole number, so we don’t need infinite digits. but both 0.333… in decimal and 0.4 in base12 are still 1/3.

        there’s no need to change the base. we know a third of one is a third and three thirds is one. how you notate it doesn’t change this at all.

        • Tlaloc_Temporal
          link
          fedilink
          English
          -16 months ago

          I’m not saying that math works differently is different bases, I’m using different bases exactly because the values don’t change. Using different bases restates the equation without using repeating decimals, thus sidestepping the flaw altogether.

          My whole point here is that the decimal system is flawed. It’s still useful, but trying to claim it is perfect leads to a conflict with reality. All models are wrong, but some are useful.

          • @pyre
            link
            English
            26 months ago

            you said 1/3 ≠ 0.333… which is false. it is exactly equal. there’s no flaw; it’s a restriction in notation that is not unique to the decimal system. there’s no “conflict with reality”, whatever that means. this just sounds like not being able to wrap your head around the concept. but that doesn’t make it a flaw.

            • Tlaloc_Temporal
              link
              fedilink
              English
              -16 months ago

              Let me restate: I am of the opinion that repeating decimals are imperfect representations of the values we use them to represent. This imperfection only matters in the case of 0.999… , but I still consider it a flaw.

              I am also of the opinion that focusing on this flaw rather than the incorrectness of the person using it is a better method of teaching.

              I accept that 1/3 is exactly equal to the value typically represented by 0.333… , however I do not agree that 0.333… is a perfect representation of that value. That is what I mean by 1/3 ≠ 0.333… , that repeating decimal is not exactly equal to that value.

      • @[email protected]
        link
        fedilink
        English
        16 months ago

        Any my argument is that 3 ≠ 0.333…

        After reading this, I have decided that I am no longer going to provide a formal proof for my other point, because odds are that you wouldn’t understand it and I’m now reasonably confident that anyone who would already understands the fact the proof would’ve supported.

        • Tlaloc_Temporal
          link
          fedilink
          English
          06 months ago

          Ah, typo. 1/3 ≠ 0.333…

          It is my opinion that repeating decimals cannot properly represent the values we use them for, and I would rather avoid them entirely (kinda like the meme).

          Besides, I have never disagreed with the math, just that we go about correcting people poorly. I have used some basic mathematical arguments to try and intimate how basic arithmetic is a limited system, but this has always been about solving the systemic problem of people getting caught by 0.999… = 1. Math proofs won’t add to this conversation, and I think are part of the issue.

          Is it possible to have a coversation about math without either fully agreeing or calling the other stupid? Must every argument about even the topic be backed up with proof (a sociological one in this case)? Or did you just want to feel superior?

          • @[email protected]
            link
            fedilink
            English
            16 months ago

            It is my opinion that repeating decimals cannot

            Your opinion is incorrect as a question of definition.

            I have never disagreed with the math

            You had in the previous paragraph.

            Is it possible to have a coversation about math without either fully agreeing or calling the other stupid?

            Yes, however the problem is that you are speaking on matters that you are clearly ignorant. This isn’t a question of different axioms where we can show clearly how two models are incompatible but resolve that both are correct in their own contexts; this is a case where you are entirely, irredeemably wrong, and are simply refusing to correct yourself. I am an algebraist understanding how two systems differ and compare is my specialty. We know that infinite decimals are capable of representing real numbers because we do so all the time. There. You’re wrong and I’ve shown it via proof by demonstration. QED.

            They are just symbols we use to represent abstract concepts; the same way I can inscribe a “1” to represent 3-2={ {} } I can inscribe “.9~” to do the same. The fact that our convention is occasionally confusing is irrelevant to the question; we could have a system whereby each number gets its own unique glyph when it’s used and it’d still be a valid way to communicate the ideas. The level of weirdness you can do and still have a valid notational convention goes so far beyond the meager oddities you’ve been hung up on here. Don’t believe me? Look up lambda calculus.