- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
To accelerate the transition to memory safe programming languages, the US Defense Advanced Research Projects Agency (DARPA) is driving the development of TRACTOR, a programmatic code conversion vehicle.
The term stands for TRanslating All C TO Rust. It’s a DARPA project that aims to develop machine-learning tools that can automate the conversion of legacy C code into Rust.
The reason to do so is memory safety. Memory safety bugs, such buffer overflows, account for the majority of major vulnerabilities in large codebases. And DARPA’s hope is that AI models can help with the programming language translation, in order to make software more secure.
“You can go to any of the LLM websites, start chatting with one of the AI chatbots, and all you need to say is ‘here’s some C code, please translate it to safe idiomatic Rust code,’ cut, paste, and something comes out, and it’s often very good, but not always,” said Dan Wallach, DARPA program manager for TRACTOR, in a statement.
And you’re making the assumption that it could be. Why am I the only one who needs to show anything?
I’m saying that LLMs fail at many basic tasks that any person which could commonly be said to have an understanding of them wouldn’t. You brought up the Turing test as though it was an actual, widely accepted scientific measure of understanding.
Source - Wikipedia.
What do you mean, “certain of the answer?” It’s math. I apply knowledge, my understanding gained through study, to reason about and solve a problem. Ask me to solve it again, the rules don’t change; I’ll get the same answer. Again, what do you mean?
Apples to oranges. “What’s Obama’s first name” doesn’t require the same kind of skills as solving a math problem.
Also, it took me 7 attempts to get ChatGPT to be confidently wrong about Obama’s name:
It couldn’t even give me the same answer 7 times.
That’s not my argument. If your daughter hasn’t learned multiplication yet, there’s no way she could guess the answer. Once has grown and learned it, though, I bet she’ll be able to answer that reliably. And I fully believe she’ll understand more about our world than any LLM. I hope you do so as well.
It’s absolutely related, because as I stated, LLMs have no concept of knowing. Even if there are humans that’ll lie, make things up, spread misinformation—sometimes even on purpose—at least there are also humans who won’t. People who’ll try to find the truth. People that will say, “Actually, I’m not sure. Why don’t we look into it together?”
LLMs don’t do that, and they fundamentally can’t. Any insurmountable objection to answering questions is a guardrail put in place by their developers, and researchers are already looking into how to subvert those.
Sorry to hear that. From experience, I know they can cause a lot of damage, even unintentionally.
Very confident assertion, there. Can I ask where’s your proof?
I see that you also neglected to answer a critical part of my comment, so I’ll just copy and paste it here.
Any opinion on this?
“Could be” is the null hypothesis.
Hmm I’m guessing you don’t have children.
Oh dear. I dunno where to start here… but basically while maths itself is either true or false, our certainty of a mathematical truth is definitely not. Even for the cleverest mathematicians there are now proofs that are too complicated for humans to understand. They have to be checked by machines… then how much do you trust that the machine checker is bug free? Formal verification tools often have bugs.
Just because something “is math” doesn’t mean we’re certain of it.
I don’t have proof. That’s my point. Your position is no stronger than the opposite position. You just asserted it as fact.