I think there’s some new initiatives for deeper drilling to make geothermal feasible in most areas now. Would be great because geothermal is probably the best energy source available to us.
AFAIK geothermal is not renewable, in other words, all of the underground heat is just stored there from the formation of earth, but once consumed, it doesn’t regenerate.
Earth’s core’s heat is renewable, but only in geological timescales. Not in the next 1000 years. Same as oil. That’s why we don’t count it as renewable: It’s not renewable on a human timescale.
The risks are pretty minimal, especially after the drilling & building is done. And in exchange you get basically unlimited free base load safe energy. Wind and solar still have issues with the materials used and their recycling, but I suppose that’s more of a problem for “other people”.
Fissile nuclear is clean enough. It has been smeared and misregulated through lobbying, propaganda, and donations to genuine believers among environmentalists by the fossil fuel industry. But even today uranium fuel cycle power plants produce less lifetime pollution per kWh than solar panels. Solar panel technology will improve, but so would nuclear with thorium or more technical improvements in reactor design.
Once solar panels don’t require rare earths anymore and once some new technology is developed to store electricity between peak production and peak consumption without massive pollution in quantities sufficient to meet everyone’s needs, it makes sense to phase out fission. But we’re still pretty far from that.
So don’t build your nuclear reactors in a place that doesn’t have shit tons of water?
Solar and wind can’t handle peak consumption without obscene amounts of heavily polluting storage. They should definitely get the majority of the attention and budget, but nuclear is still important and will still be faster to scale up faster in many
specific locations. Get as much solar in the subtropics and tropics as possible, get wind in windy locations, get geothermal and tidal where that is viable, but get nuclear in places with plenty of water that are further than 45 degrees/5000 km from the equator in areas with little wind, and for peak consumption in places without hydroelectric or other power that isn’t best to keep at the max 24/7, and for quick response to fluctuations in wind and solar in places where other regulators aren’t available.
The articles you link are about experimental or niche tech, expensive or inefficient or both. Rare earths are still used in pretty much all solar panels that are actually being built. They’re also not the only form of pollution from solar panel manufacturing, transportation, installation, and recycling/disposal.
deleted by creator
hydro? geothermal?
deleted by creator
I think there’s some new initiatives for deeper drilling to make geothermal feasible in most areas now. Would be great because geothermal is probably the best energy source available to us.
AFAIK geothermal is not renewable, in other words, all of the underground heat is just stored there from the formation of earth, but once consumed, it doesn’t regenerate.
That’s why i’m not a big fan of geothermal.
That’s like saying the Earth’s core or the sun / solar is not renewable.
Earth’s core’s heat is renewable, but only in geological timescales. Not in the next 1000 years. Same as oil. That’s why we don’t count it as renewable: It’s not renewable on a human timescale.
It’s also not going to run out anytime soon.
deleted by creator
The risks are pretty minimal, especially after the drilling & building is done. And in exchange you get basically unlimited free base load safe energy. Wind and solar still have issues with the materials used and their recycling, but I suppose that’s more of a problem for “other people”.
deleted by creator
Fissile nuclear is clean enough. It has been smeared and misregulated through lobbying, propaganda, and donations to genuine believers among environmentalists by the fossil fuel industry. But even today uranium fuel cycle power plants produce less lifetime pollution per kWh than solar panels. Solar panel technology will improve, but so would nuclear with thorium or more technical improvements in reactor design.
Once solar panels don’t require rare earths anymore and once some new technology is developed to store electricity between peak production and peak consumption without massive pollution in quantities sufficient to meet everyone’s needs, it makes sense to phase out fission. But we’re still pretty far from that.
deleted by creator
So don’t build your nuclear reactors in a place that doesn’t have shit tons of water?
Solar and wind can’t handle peak consumption without obscene amounts of heavily polluting storage. They should definitely get the majority of the attention and budget, but nuclear is still important and will still be faster to scale up faster in many specific locations. Get as much solar in the subtropics and tropics as possible, get wind in windy locations, get geothermal and tidal where that is viable, but get nuclear in places with plenty of water that are further than 45 degrees/5000 km from the equator in areas with little wind, and for peak consumption in places without hydroelectric or other power that isn’t best to keep at the max 24/7, and for quick response to fluctuations in wind and solar in places where other regulators aren’t available.
The articles you link are about experimental or niche tech, expensive or inefficient or both. Rare earths are still used in pretty much all solar panels that are actually being built. They’re also not the only form of pollution from solar panel manufacturing, transportation, installation, and recycling/disposal.
deleted by creator