There go my swimming on Korea’s east side plans for this year.

  • 133arc585
    link
    fedilink
    English
    22
    edit-2
    1 year ago

    I’m very rusty here, so please correct me where I’m wrong.

    Isn’t most of the radiation that makes it to the earth’s surface from the sun just EM radiation? That acts a lot different than radiation due to nuclear decay. Your use of the unit ‘tons’ makes me think you’re talking about particle radiation, of which the only one that reaches earth’s surface in large quantities would be muons, which may as well be ignored because they aren’t interacting with anything.

    The water being released by Japan has the following isotopes:

    Isotope Half-Life (years)
    Tritium (3H) 12
    Carbon-14 5,370
    Cobalt-60 5.2
    Strontium-90 28.8

    All four of these isotopes decay via beta decay.

    So, a comparison to the Sun seems weird here.


    Here’s an IAEA overview as of February 2023,

    The discharge of the ALPS treated water into the sea will be conducted after i) purification/re-purification to meet regulatory standards set based on international standards with an exception of tritium and ii) to allay the concerns of the consumers, the target concentration of tritium should be the same as the operational target (less than 1,500 Bq/L, that is less than 1/40 of the regulatory standard value for tritium) by sufficient dilution (more than 100 times) by sea water, prior to the discharge into the sea, and iii) The total annual amount of tritium to be discharged will be at a level below the operational target value for tritium discharge of the Fukushima Daiichi NPS before the accident (22 trillion Bq/year).

    So it’s diluted well below internationally accepted concentrations. Moreover, the release is even less than when it was operational!

    • @A_A
      link
      English
      5
      edit-2
      1 year ago

      That 50 ton per day I recalled from long ago. So I had to make some search, here’s what I found :

      1. Ground Level Enhancement
        These effects are usually measured as elevated levels of neutrons and muons. These events can increase the radiation dose of an individual at sea level or while in an aircraft, though not by enough to significantly increase an individual’s lifetime risk of cancer. …and
      2. solar wind
        400 km/s x 5 ions/cm3 x 1g/mol x …(6400km)2 x 3.1416 x 1e15cm3/km3
        … x 86400s/day x 1/(6.02e23 ions/mol) This is about 37 tons per day, mostly proton and alpha particles.

        I used the diameter of the earth instead of that of the magnetic field around the Earth, this is simplistic but should give an order of magnitude. I did not find better information and the real value should be found by someone else.
      solar wind details inside :

      Properties and structure
      Velocity and density :
      “Near the Earth’s orbit at 1 astronomical unit (AU) the plasma flows at speeds ranging from 250 to 750 km/s (155–404 mi/s) with a density ranging between 3 and 10 particles per cubic centimeter and”…

      • 133arc585
        link
        fedilink
        English
        31 year ago

        You’re right and I completely forgot about those somehow.

        For pespective,

        On average, Americans receive a radiation dose of about 0.62 rem (620 millirem) each year. Half of this dose comes from natural background radiation. Most of this background exposure comes from radon in the air, with smaller amounts from cosmic rays and the Earth itself.

        So, cosmic rays contribute hardly (about 4%) any to the radiation we receive every day.

        I’m no expert here, clearly, so I’m not sure how to compare these units of radiation with the ones being provided for the Fukushima water release; those numbers are provided in becquerel from the sources I found.