@[email protected]M to Science [email protected]English • 2 months agoSpanish Notationsmander.xyzimagemessage-square23fedilinkarrow-up1626arrow-down18
arrow-up1618arrow-down1imageSpanish Notationsmander.xyz@[email protected]M to Science [email protected]English • 2 months agomessage-square23fedilink
minus-square@[email protected]linkfedilinkEnglish14•edit-22 months agoIntroducing, the signed factorial: ¡n! = n × -(n-1) × (n-2) x -(n-3) x … x (-1)^(n-2)(2) ×(-1)^(n-1)(1)
minus-square@[email protected]linkfedilinkEnglish10•2 months agoThere’s no Nobel price for mathematics, but I can accept the one for peace instead.
minus-square@[email protected]linkfedilinkEnglish8•edit-22 months agoI’d prefer an alternative definition that starts with the base case ¡0! = 1, and then for n > 0 we define ¡n! = n * -¡(n-1)!
minus-square@[email protected]linkfedilinkEnglish5•2 months agooop there was a real stupid typo where I forgot the minus sign lmao it’s fixed now
minus-square@[email protected]linkfedilinkEnglish6•2 months agoIt’s the same calculation but you also take a shot of vodka for all integers less than n but greater than 0
Aren’t all factorials absolute factorials?
Introducing, the signed factorial: ¡n! = n × -(n-1) × (n-2) x -(n-3) x … x (-1)^(n-2)(2) ×(-1)^(n-1)(1)
We did it Lemmy!
Where’s our Nobel prize.
There’s no Nobel price for mathematics, but I can accept the one for peace instead.
I heard biology branches out.
I’d prefer an alternative definition that starts with the base case ¡0! = 1, and then for n > 0 we define ¡n! = n * -¡(n-1)!
How are you going to flip the signs though?
oop there was a real stupid typo where I forgot the minus sign lmao
it’s fixed now
It’s the same calculation but you also take a shot of vodka for all integers less than n but greater than 0