I promise this question is asked in good faith. I do not currently see the point of generative AI and I want to understand why there’s hype. There are ethical concerns but we’ll ignore ethics for the question.
In creative works like writing or art, it feels soulless and poor quality. In programming at best it’s a shortcut to avoid deeper learning, at worst it spits out garbage code that you spend more time debugging than if you had just written it by yourself.
When I see AI ads directed towards individuals the selling point is convenience. But I would feel robbed of the human experience using AI in place of human interaction.
So what’s the point of it all?
Idea generation.
E.g., I asked an LLM client for interactive lessons for teaching 4th graders about aerodynamics, esp related to how birds fly. It came back with 98% amazing suggestions that I had to modify only slightly.
A work colleague asked an LLM client for wedding vow ideas to break through writer’s block. The vows they ended up using were 100% theirs, but the AI spit out something on paper to get them started.
Those are just ideas that were previously “generated” by humans though, that the LLM learned
That’s not how modern generative AI works. It isn’t sifting through its training dataset to find something that matches your query like some kind of search engine. It’s taking your prompt and passing it through its massive statistical model to come to a result that meets your demand.
I feel like “passing it through a statistical model”, while absolutely true on a technical implementation level, doesn’t get to the heart of what it is doing so that people understand. It’s using the math terms, potentially deliberately to obfuscate and make it seem either simpler than it is. It’s like reducing it to “it just predicts the next word”. Technically true, but I could implement a black box next word predictor by sticking a real person in the black box and ask them to predict the next word, and it’d still meet that description.
The statistical model seems to be building some sort of conceptual grid of word relationships that approximates something very much like actually understanding what the words mean, and how the words are used semantically, with some random noise thrown into the mix at just the right amounts to generate some surprises that look very much like creativity.
Decades before LLMs were a thing, the Zompist wrote a nice essay on the Chinese room thought experiment that I think provides some useful conceptual models: http://zompist.com/searle.html