- cross-posted to:
- [email protected]
- georgia
- [email protected]
- cross-posted to:
- [email protected]
- georgia
- [email protected]
First U.S. nuclear reactor built from scratch in decades enters commercial operation in Georgia::ATLANTA — A new reactor at a nuclear power plant in Georgia has entered commercial operation, becoming the first new American reactor built from scratch in decades.
There are plenty of firming options (battery, pumped hydro, flywheels etc) which deliver reliability for a fraction of the price of this boondoggle. Not to mention a diverse portfolio of renewable technologies spread over a large geographical area is actually quite stable. When the sun isn’t shining in one area, the wind may be blowing or the sun shining in another area.
Those can only hold enough power for minutes or hours.
We need to be able to store power from the summer until the winter. Months. We need to store energy from when the sun is shining in July until it’s not in December.
The only possible way to do that now is to store it as hydrogen or hydrocarbons. That infrastructure is currently very lossy, expensive, and only hypothetical.
This idea they can only hold for minutes or hours is simply not true not to mention the entire premise is false. Only the cloudiest of days the solar panels produce 20% what they do on the sunniest days that means you only need to build out 5 times the expected output to always be able to produce what you need during sunny hourse. That means you only need to have battery backup for 16 hours. Something that’s completely feasible. The idea batteries can’t hold power for months isn’t true it’s that it’s not currently economical. How long do you think your electronics take to get from the plant to the store till you buy it and turn it on. If we’re talking about cost then let’s look at this plant. 1.1GW nuclear reactor costs 35 billion and 15 years. A solar farm built out to 5 times capacity would cost roughly 6 billion. Now triple that for battery costs if you want 24/7 electricity were on the order of 18 billion. That’s nearly half the cost and this is being very conservative assuming you want this to be a baseload supplier but will output way more most of the time. Now you will have nearly free electricity during most of the year that other industries could take advantage of like aluminum processing or something like that.
You are simply incorrect. I don’t know why you think that there are any actual technologies that can store terawatt hours of electricity for months at a time. You can’t pump storage the entirety of lake Mead. You can’t have flywheels that have such low friction at such high mass and speed. And the batteries…you can’t be serious.
You are also under the incredible misapprehension that the market is going to build excess capacity such that they will need to give away “nearly free” electricity. The need to be able to store it to sell when the price is better or be funded for some kind of (as yet hypothetical) carbon sequestration project.
Being generous with a 16h battery you already spend half overnight. What would happen in your scenario if it’s cloudy for longer than 8 hours? If it wouldn’t even last for a day it’s not a realistic plan that accounts for normal weather
You don’t need power storage for months, if you combine different renewable sources and have power lines connecting different areas. Wind and solar complement each other usually.
You need to be able to bridge a few weeks though, because there will be gaps, but you don’t need to store solar power for half a year to make it. It is still a big issue, but no need to exaggerate.