• nomad
    link
    fedilink
    711 months ago

    Proovably secure PRNGs are as secure as TRNGs. All you need is enough entropy and that you can get from plenty of sources.

    A single chip you rely on for entropy is a problem as you cant look inside. Therefore you cant trust it fully.

    • @[email protected]
      link
      fedilink
      111 months ago

      While they may be as secure, I would not call that the same level of random. I’ll agree they are equal in almost every use case, but truly random is still “more random” in comparison.

      Though I’ll concede that if it can’t be proven to be truly random, it’s not of much use.

      • @FooBarrington
        link
        311 months ago

        How do you measure the amount of “true randomness”? CSPRNGs can use very little entropy to generate large amounts of random data. Mathematically speaking there isn’t any difference between that and what you call “true randomness” - if there was, they wouldn’t be CSPRNGs.

        • @[email protected]
          link
          fedilink
          111 months ago

          Truly random would be something that is impossible to reproduce. While you are correct that we can approximate randomness, the final calculation can always be replicated if the initial inputs are known. Just because something is exceedingly difficult to replicate, doesn’t mean it is truly random.

          Think of it like cleaning your pool. You have a vacuum, chemicals, the system circulates, maybe a skimmer or a net. You can get the pool to the point that it is acceptable to swim in, but you’re never actually swimming in a clean pool. In a similar manner, current random number generators get you to a point that you are (usually) fine assuming the number is random, but it never really is.

          • @FooBarrington
            link
            311 months ago

            I know what you’re trying to get at, but my point is this: Imagine you have two streams of data, one from a CSPRNG, and one from what you call “true randomness”. How can you tell which one is which (as long as you’re staying under the CSPRNGs limit from your initial entropy)?

            If you can’t tell me a way, there is no functional difference between these two options. So what advantage would true randomness hold?

            • @[email protected]
              link
              fedilink
              011 months ago

              I said this in another comment, but while I agree that there is virtually no functional difference, and in the vast majority of cases truly random and functionally random are equivalent, that doesn’t mean that something which is functionally random is truly random.

              • @FooBarrington
                link
                311 months ago

                But it is truly random for all intents and purposes, since the input is truly random. Just because the process contains deterministic steps doesn’t mean the input entropy isn’t true entropy anymore.

                • @[email protected]
                  link
                  fedilink
                  011 months ago

                  And a pool is clean for all intents and purposes. There is still a distinction though. The fact that it is deterministic inherently makes it less random than true randomness.