• @[email protected]
    link
    fedilink
    397 hours ago

    … Are the Feds aware that the core systems that many, many older companies (and government agencies) use are still based on COBOL?

    Is… is that not of any concern?

    • @[email protected]
      link
      fedilink
      105 hours ago

      Is COBOL subject to buffer overflows and use-after-free bugs? I honestly don’t know.

      I don’t recall the COBOL code I’ve read using pointers.

      • @[email protected]
        link
        fedilink
        22 hours ago

        The problem I am aware of is moreso that the number of programmers that know COBOL is vanishingly small, it … COBOL does not seem to really be taught anymore…

        …so if something goes wrong at that level, you may be SOL if you cannot find an increasingly rare programmer that knows COBOL well.

    • @Womble
      link
      English
      14 hours ago

      deleted by creator

  • @[email protected]
    link
    fedilink
    English
    387 hours ago

    That sounds like policy written by somebody who has no idea what the reality of software development is.

    1 year to rewrite critical software in a new language?

    • @[email protected]
      link
      fedilink
      English
      415 hours ago

      Did you read the article at all?

      “Putting all new code aside, fortunately, neither this document nor the U.S. government is calling for an immediate migration from C/C++ to Rust — as but one example,” he said. “CISA’s Secure by Design document recognizes that software maintainers simply cannot migrate their code bases en masse like that.”

      Companies have until January 1, 2026, to create memory safety roadmaps.

      All they are asking for by that date is a roadmap for dealing with memory safety issues, not rewrite everything.

  • @perviouslyiner
    link
    13
    edit-2
    6 hours ago

    Seems excessive to convert everything to rust when you can use std::shared_ptr and std::weak_ptr to eliminate the memory safety issue?

    • @[email protected]OP
      link
      fedilink
      11
      edit-2
      1 hour ago

      Using smart pointers doesn’t eliminate the memory safety issue, it merely addresses one aspect of it. Even with smart pointers, nothing is preventing you from passing references and using them after they’re freed.

      • @[email protected]
        link
        fedilink
        143 minutes ago

        To be fair, it’s entirely possible to make the same and very similar mistakes in Rust, too.

    • @[email protected]
      link
      fedilink
      75 hours ago

      I get what you’re saying, but I think the issue with optional memory safety features is that it’s hard to be sure you’re using it in all the places and hard to maintain that when someone can add a new allocation in the future, etc. It’s certainly doable, and maybe some static analysis tools out there can prove it’s all okay.

      Whereas with Rust, it’s built from the ground up to prove exactly that, plus other things like no memory being shared between threads by accident etc. Rust makes it difficult and obvious to do the wrong thing, rather than that being the default.

    • magic_lobster_party
      link
      fedilink
      44 hours ago

      From the original document:

      Software manufacturers should build products in a manner that systematically prevents the introduction of memory safety vulnerabilities, such as by using a memory safe language or hardware capabilities that prevent memory safety vulnerabilities. Additionally, software manufacturers should publish a memory safety roadmap by January 1, 2026.

      My interpretation is that smart pointers are allowed, as long it’s systematically enforced. Switching to a memory safe language is just one example.

  • Sonotsugipaa
    link
    fedilink
    English
    127 hours ago

    That is an extremely oddly specific cysec issue they’re choosing to target…

    • @BlazeDaley
      link
      74 hours ago

      It’s one backed by a lot of data. One example is from the Android project.

      The percent of vulnerabilities caused by memory safety issues continues to correlate closely with the development language that’s used for new code. Memory safety issues, which accounted for 76% of Android vulnerabilities in 2019, and are currently 24% in 2024, well below the 70% industry norm, and continuing to drop.

      https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

      There’s an argument that critical infrastructure software vendors are already meeting standards for basic, non-memory related items. Yes, there are other categories, but memory safety is one that’s harder to verify. Moving to memory safe languages is an ensure a category of correctness. This excludes usage of unsafe escape hatches.