Day 10: Hoof It
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
C
Tried a dynamic programming kind of thing first but recursion suited the problem much better.
Part 2 seemed incompatible with my visited list representation. Then at the office I suddenly realised I just had to skip a single if(). Funny how that works when you let things brew in the back of your mind.
Code
#include "common.h" #define GZ 43 /* * To avoid having to clear the 'seen' array after every search we mark * and check it with a per-search marker value ('id'). */ static char g[GZ][GZ]; static int seen[GZ][GZ]; static int score(int id, int x, int y, int p2) { if (x<0 || x>=GZ || y<0 || y>=GZ || (!p2 && seen[y][x] == id)) return 0; seen[y][x] = id; if (g[y][x] == '9') return 1; return (g[y-1][x] == g[y][x]+1 ? score(id, x, y-1, p2) : 0) + (g[y+1][x] == g[y][x]+1 ? score(id, x, y+1, p2) : 0) + (g[y][x-1] == g[y][x]+1 ? score(id, x-1, y, p2) : 0) + (g[y][x+1] == g[y][x]+1 ? score(id, x+1, y, p2) : 0); } int main(int argc, char **argv) { int p1=0,p2=0, id=1, x,y; if (argc > 1) DISCARD(freopen(argv[1], "r", stdin)); for (y=0; y<GZ && fgets(g[y], GZ, stdin); y++) ; for (y=0; y<GZ; y++) for (x=0; x<GZ; x++) if (g[y][x] == '0') { p1 += score(id++, x, y, 0); p2 += score(id++, x, y, 1); } printf("10: %d %d\n", p1, p2); return 0; }
That’s a lovely minimalist solution. I couldn’t even see where the solution was on my first read-through.
I bet that search would look cool visualized.
Here it is! https://sjmulder.nl/2024/aoc-day10.mp4
Oooh! Pretty!
Rust
Definitely a nice and easy one, I accidentally solved part 2 first, because I skimmed the challenge and missed the unique part.
#[cfg(test)] mod tests { const DIR_ORDER: [(i8, i8); 4] = [(-1, 0), (0, 1), (1, 0), (0, -1)]; fn walk_trail(board: &Vec<Vec<i8>>, level: i8, i: i8, j: i8) -> Vec<(i8, i8)> { let mut paths = vec![]; if i < 0 || j < 0 { return paths; } let actual_level = match board.get(i as usize) { None => return paths, Some(line) => match line.get(j as usize) { None => return paths, Some(c) => c, }, }; if *actual_level != level { return paths; } if *actual_level == 9 { return vec![(i, j)]; } for dir in DIR_ORDER.iter() { paths.extend(walk_trail(board, level + 1, i + dir.0, j + dir.1)); } paths } fn count_unique(p0: &Vec<(i8, i8)>) -> u32 { let mut dedup = vec![]; for p in p0.iter() { if !dedup.contains(p) { dedup.push(*p); } } dedup.len() as u32 } #[test] fn day10_part1_test() { let input = std::fs::read_to_string("src/input/day_10.txt").unwrap(); let board = input .trim() .split('\n') .map(|line| { line.chars() .map(|c| { if c == '.' { -1 } else { c.to_digit(10).unwrap() as i8 } }) .collect::<Vec<i8>>() }) .collect::<Vec<Vec<i8>>>(); let mut total = 0; for (i, row) in board.iter().enumerate() { for (j, pos) in row.iter().enumerate() { if *pos == 0 { let all_trails = walk_trail(&board, 0, i as i8, j as i8); total += count_unique(&all_trails); } } } println!("{}", total); } #[test] fn day10_part2_test() { let input = std::fs::read_to_string("src/input/day_10.txt").unwrap(); let board = input .trim() .split('\n') .map(|line| { line.chars() .map(|c| { if c == '.' { -1 } else { c.to_digit(10).unwrap() as i8 } }) .collect::<Vec<i8>>() }) .collect::<Vec<Vec<i8>>>(); let mut total = 0; for (i, row) in board.iter().enumerate() { for (j, pos) in row.iter().enumerate() { if *pos == 0 { total += walk_trail(&board, 0, i as i8, j as i8).len(); } } } println!("{}", total); } }
Nim
As many others today, I’ve solved part 2 first and then fixed a ‘bug’ to solve part 1. =)
type Vec2 = tuple[x,y:int] const Adjacent = [(x:1,y:0),(-1,0),(0,1),(0,-1)] proc path(start: Vec2, grid: seq[string]): tuple[ends, trails: int] = var queue = @[@[start]] var endNodes: HashSet[Vec2] while queue.len > 0: let path = queue.pop() let head = path[^1] let c = grid[head.y][head.x] if c == '9': inc result.trails endNodes.incl head continue for d in Adjacent: let nd = (x:head.x + d.x, y:head.y + d.y) if nd.x < 0 or nd.y < 0 or nd.x > grid[0].high or nd.y > grid.high: continue if grid[nd.y][nd.x].ord - c.ord != 1: continue queue.add path & nd result.ends = endNodes.len proc solve(input: string): AOCSolution[int, int] = let grid = input.splitLines() var trailstarts: seq[Vec2] for y, line in grid: for x, c in line: if c == '0': trailstarts.add (x,y) for start in trailstarts: let (ends, trails) = start.path(grid) result.part1 += ends result.part2 += trails
Haskell
A nice easy one today: didn’t even have to hit this with the optimization hammer.
import Data.Char import Data.List import Data.Map (Map) import Data.Map qualified as Map readInput :: String -> Map (Int, Int) Int readInput s = Map.fromList [ ((i, j), digitToInt c) | (i, l) <- zip [0 ..] (lines s), (j, c) <- zip [0 ..] l ] findTrails :: Map (Int, Int) Int -> [[[(Int, Int)]]] findTrails input = Map.elems . Map.map (filter ((== 10) . length)) $ Map.restrictKeys accessible starts where starts = Map.keysSet . Map.filter (== 0) $ input accessible = Map.mapWithKey getAccessible input getAccessible (i, j) h | h == 9 = [[(i, j)]] | otherwise = [ (i, j) : path | (di, dj) <- [(-1, 0), (0, 1), (1, 0), (0, -1)], let p = (i + di, j + dj), input Map.!? p == Just (succ h), path <- accessible Map.! p ] main = do trails <- findTrails . readInput <$> readFile "input10" mapM_ (print . sum . (`map` trails)) [length . nub . map last, length]
Python
Not surprisingly, trees
import numpy as np from pathlib import Path cwd = Path(__file__).parent cross = np.array([[-1,0],[1,0],[0,-1],[0,1]]) class Node(): def __init__(self, coord, parent): self.coord = coord self.parent = parent def __repr__(self): return f"{self.coord}" def parse_input(file_path): with file_path.open("r") as fp: data = list(map(list, fp.read().splitlines())) return np.array(data, dtype=int) def find_neighbours(node_pos, grid): I = list(filter(lambda x: all([c>=0 and o-c>0 for c,o in zip(x,grid.shape)]), list(cross + node_pos))) candidates = grid[tuple(np.array(I).T)] J = np.argwhere(candidates-grid[tuple(node_pos)]==1).flatten() return list(np.array(I).T[:, J].T) def construct_tree_paths(grid): roots = list(np.argwhere(grid==0)) trees = [] for root in roots: levels = [[Node(root, None)]] while len(levels[-1])>0 or len(levels)==1: levels.append([Node(node, root) for root in levels[-1] for node in find_neighbours(root.coord, grid)]) trees.append(levels) return trees def trace_back(trees, grid): paths = [] for levels in trees: for node in levels[-2]: path = "" while node is not None: coord = ",".join(node.coord.astype(str)) path += f"{coord} " node = node.parent paths.append(path) return paths def solve_problem(file_name): grid = parse_input(Path(cwd, file_name)) trees = construct_tree_paths(grid) trails = trace_back(trees, grid) ntrails = len(set(trails)) nreached = sum([len(set([tuple(x.coord) for x in levels[-2]])) for levels in trees]) return nreached, ntrails
Uiua
Uiua has a very helpful
path
function built in which returns all valid paths that match your criteria (using diijkstra/a* depending on whether third function is provided), making a lot of path-finding stuff almost painfully simple, as you just need to provide a starting node and three functions: return next nodes, return confirmation if we’ve reached a suitable target node (here testing if it’s = 9), (optional) return heuristic cost to destination (here set to constant 1), .Data ← ⊜≡⋕⊸≠@\n"89010123\n78121874\n87430965\n96549874\n45678903\n32019012\n01329801\n10456732" N₄ ← ≡+[0_1 1_0 0_¯1 ¯1_0]¤ Ns ← ▽:⟜(=1-:∩(⬚0⊡:Data))▽⊸≡(/×≥0)N₄. # Valid, in-bounds neighbours. Count! ← /+≡(⧻^0⊙◌ path(Ns|(=9⊡:Data)|1))⊚=0Data &p Count!(◴≡◇⊣) &p Count!∘
C#
using System.Diagnostics; using Common; namespace Day10; static class Program { static void Main() { var start = Stopwatch.GetTimestamp(); var sampleInput = Input.ParseInput("sample.txt"); var programInput = Input.ParseInput("input.txt"); Console.WriteLine($"Part 1 sample: {Part1(sampleInput)}"); Console.WriteLine($"Part 1 input: {Part1(programInput)}"); Console.WriteLine($"Part 2 sample: {Part2(sampleInput)}"); Console.WriteLine($"Part 2 input: {Part2(programInput)}"); Console.WriteLine($"That took about {Stopwatch.GetElapsedTime(start)}"); } static object Part1(Input i) => GetTrailheads(i) .Sum(th => CountTheNines(th, i, new HashSet<Point>(), false)); static object Part2(Input i) => GetTrailheads(i) .Sum(th => CountTheNines(th, i, new HashSet<Point>(), true)); static int CountTheNines(Point loc, Input i, ISet<Point> visited, bool allPaths) { if (!visited.Add(loc)) return 0; var result = (ElevationAt(loc, i) == 9) ? 1 : loc.GetCardinalMoves() .Where(move => move.IsInBounds(i.Bounds.Row, i.Bounds.Col)) .Where(move => (ElevationAt(move, i) - ElevationAt(loc, i)) == 1) .Where(move => !visited.Contains(move)) .Sum(move => CountTheNines(move, i, visited, allPaths)); if(allPaths) visited.Remove(loc); return result; } static IEnumerable<Point> GetTrailheads(Input i) => Grid.EnumerateAllPoints(i.Bounds) .Where(loc => ElevationAt(loc, i) == 0); static int ElevationAt(Point p, Input i) => i.Map[p.Row][p.Col]; } public class Input { public required Point Bounds { get; init; } public required int[][] Map { get; init; } public static Input ParseInput(string file) { using var reader = new StreamReader(file); var map = reader.EnumerateLines() .Select(l => l.Select(c => (int)(c - '0')).ToArray()) .ToArray(); var bounds = new Point(map.Length, map.Max(l => l.Length)); return new Input() { Map = map, Bounds = bounds, }; } }
Straightforward depth first search. I found that the only difference for part 2 was to remove the current location from the HashSet of visited locations when the recurive call finished so that it could be visited again in other unique paths.
Haskell
Cool task, nothing to optimize
import Control.Arrow import Data.Array.Unboxed (UArray) import Data.Set (Set) import qualified Data.Char as Char import qualified Data.List as List import qualified Data.Set as Set import qualified Data.Array.Unboxed as UArray parse :: String -> UArray (Int, Int) Int parse s = UArray.listArray ((1, 1), (n, m)) . map Char.digitToInt . filter (/= '\n') $ s where n = takeWhile (/= '\n') >>> length $ s m = filter (== '\n') >>> length >>> pred $ s reachableNeighbors :: (Int, Int) -> UArray (Int, Int) Int -> [(Int, Int)] reachableNeighbors p@(py, px) a = List.filter (UArray.inRange (UArray.bounds a)) >>> List.filter ((a UArray.!) >>> pred >>> (== (a UArray.! p))) $ [(py-1, px), (py+1, px), (py, px-1), (py, px+1)] distinctTrails :: (Int, Int) -> UArray (Int, Int) Int -> Int distinctTrails p a | a UArray.! p == 9 = 1 | otherwise = flip reachableNeighbors a >>> List.map (flip distinctTrails a) >>> sum $ p reachableNines :: (Int, Int) -> UArray (Int, Int) Int -> Set (Int, Int) reachableNines p a | a UArray.! p == 9 = Set.singleton p | otherwise = flip reachableNeighbors a >>> List.map (flip reachableNines a) >>> Set.unions $ p findZeros = UArray.assocs >>> filter (snd >>> (== 0)) >>> map fst part1 a = findZeros >>> map (flip reachableNines a) >>> map Set.size >>> sum $ a part2 a = findZeros >>> map (flip distinctTrails a) >>> sum $ a main = getContents >>= print . (part1 &&& part2) . parse
Nice to have a really simple one for a change, both my day 1 and 2 solutions worked on their very first attempts.
I rewrote the code to combine the two though, since the implementations were almost identical for both solutions, and also to replace the recursion with a search list instead.C#
int[] heights = new int[0]; (int, int) size = (0, 0); public void Input(IEnumerable<string> lines) { size = (lines.First().Length, lines.Count()); heights = string.Concat(lines).Select(c => int.Parse(c.ToString())).ToArray(); } int trails = 0, trailheads = 0; public void PreCalc() { for (int y = 0; y < size.Item2; ++y) for (int x = 0; x < size.Item1; ++x) if (heights[y * size.Item1 + x] == 0) { var unique = new HashSet<(int, int)>(); trails += CountTrails((x, y), unique); trailheads += unique.Count; } } public void Part1() { Console.WriteLine($"Trailheads: {trailheads}"); } public void Part2() { Console.WriteLine($"Trails: {trails}"); } int CountTrails((int, int) from, HashSet<(int,int)> unique) { int found = 0; List<(int,int)> toSearch = new List<(int, int)>(); toSearch.Add(from); while (toSearch.Any()) { var cur = toSearch.First(); toSearch.RemoveAt(0); int height = heights[cur.Item2 * size.Item1 + cur.Item1]; for (int y = -1; y <= 1; ++y) for (int x = -1; x <= 1; ++x) { if ((y != 0 && x != 0) || (y == 0 && x == 0)) continue; var newAt = (cur.Item1 + x, cur.Item2 + y); if (newAt.Item1 < 0 || newAt.Item1 >= size.Item1 || newAt.Item2 < 0 || newAt.Item2 >= size.Item2) continue; int newHeight = heights[newAt.Item2 * size.Item1 + newAt.Item1]; if (newHeight - height != 1) continue; if (newHeight == 9) { unique.Add(newAt); found++; continue; } toSearch.Add(newAt); } } return found; }
Haskell
import Control.Arrow import Control.Monad.Reader import Data.Array.Unboxed import Data.List type Pos = (Int, Int) type Board = UArray Pos Char type Prob = Reader Board parse :: String -> Board parse s = listArray ((1, 1), (n, m)) $ concat l where l = lines s n = length l m = length $ head l origins :: Prob [Pos] origins = ask >>= \board -> return $ fmap fst . filter ((== '0') . snd) $ assocs board moves :: Pos -> Prob [Pos] moves pos = ask >>= \board -> let curr = board ! pos in return . filter ((== succ curr) . (board !)) . filter (inRange (bounds board)) $ fmap (.+. pos) deltas where deltas = [(1, 0), (0, 1), (-1, 0), (0, -1)] (ax, ay) .+. (bx, by) = (ax + bx, ay + by) solve :: [Pos] -> Prob [Pos] solve p = do board <- ask nxt <- concat <$> mapM moves p let (nines, rest) = partition ((== '9') . (board !)) nxt fmap (++ nines) $ if null rest then return [] else solve rest scoreTrail = fmap (length . nub) . solve . pure scoreTrail' = fmap length . solve . pure part1 = sum . runReader (origins >>= mapM scoreTrail) part2 = sum . runReader (origins >>= mapM scoreTrail') main = getContents >>= print . (part1 &&& part2) . parse
Rust
This was a nice one. Basically 9 rounds of Breadth-First-Search, which could be neatly expressed using
fold
. The only difference between part 1 and part 2 turned out to be the datastructure for the search frontier: TheHashSet
in part 1 unifies paths as they join back to the same node, theVec
in part 2 keeps all paths separate.Solution
use std::collections::HashSet; fn parse(input: &str) -> Vec<&[u8]> { input.lines().map(|l| l.as_bytes()).collect() } fn adj(grid: &[&[u8]], (x, y): (usize, usize)) -> Vec<(usize, usize)> { let n = grid[y][x]; let mut adj = Vec::with_capacity(4); if x > 0 && grid[y][x - 1] == n + 1 { adj.push((x - 1, y)) } if y > 0 && grid[y - 1][x] == n + 1 { adj.push((x, y - 1)) } if x + 1 < grid[0].len() && grid[y][x + 1] == n + 1 { adj.push((x + 1, y)) } if y + 1 < grid.len() && grid[y + 1][x] == n + 1 { adj.push((x, y + 1)) } adj } fn solve(input: String, trailhead: fn(&[&[u8]], (usize, usize)) -> u32) -> u32 { let grid = parse(&input); let mut sum = 0; for (y, row) in grid.iter().enumerate() { for (x, p) in row.iter().enumerate() { if *p == b'0' { sum += trailhead(&grid, (x, y)); } } } sum } fn part1(input: String) { fn score(grid: &[&[u8]], start: (usize, usize)) -> u32 { (1..=9) .fold(HashSet::from([start]), |frontier, _| { frontier.iter().flat_map(|p| adj(grid, *p)).collect() }) .len() as u32 } println!("{}", solve(input, score)) } fn part2(input: String) { fn rating(grid: &[&[u8]], start: (usize, usize)) -> u32 { (1..=9) .fold(vec![start], |frontier, _| { frontier.iter().flat_map(|p| adj(grid, *p)).collect() }) .len() as u32 } println!("{}", solve(input, rating)) } util::aoc_main!();
Also on github
Julia
Quite happy that today went a lot smoother than yesterday even though I am not really familiar with recursion. Normally I never use recursion but I felt like today could be solved by it (or using trees, but I’m even less familiar with them). Surprisingly my solution actually worked and for part 2 only small modifications were needed to count peaks reached by each trail.
Code
function readInput(inputFile::String) f = open(inputFile,"r") lines::Vector{String} = readlines(f) close(f) topoMap = Matrix{Int}(undef,length(lines),length(lines[1])) for (i,l) in enumerate(lines) topoMap[i,:] = map(x->parse(Int,x),collect(l)) end return topoMap end function getTrailheads(topoMap::Matrix{Int}) trailheads::Vector{Vector{Int}} = [] for (i,r) in enumerate(eachrow(topoMap)) for (j,c) in enumerate(r) c==0 ? push!(trailheads,[i,j]) : nothing end end return trailheads end function getReachablePeaks(topoMap::Matrix{Int},trailheads::Vector{Vector{Int}}) reachablePeaks = Dict{Int,Vector{Vector{Int}}}() function getPossibleMoves(topoMap::Matrix{Int},pos::Vector{Int}) possibleMoves::Vector{Vector{Int}} = [] pos[1]-1 in 1:size(topoMap)[1] && topoMap[pos[1]-1,pos[2]]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1]-1,pos[2]]) : nothing #up? pos[1]+1 in 1:size(topoMap)[1] && topoMap[pos[1]+1,pos[2]]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1]+1,pos[2]]) : nothing #down? pos[2]-1 in 1:size(topoMap)[2] && topoMap[pos[1],pos[2]-1]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1],pos[2]-1]) : nothing #left? pos[2]+1 in 1:size(topoMap)[2] && topoMap[pos[1],pos[2]+1]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1],pos[2]+1]) : nothing #right? return possibleMoves end function walkPossMoves(topoMap::Matrix{Int},pos::Vector{Int},reachedPeaks::Matrix{Bool},trailId::Int) possMoves::Vector{Vector{Int}} = getPossibleMoves(topoMap,pos) for m in possMoves if topoMap[m[1],m[2]]==9 reachedPeaks[m[1],m[2]]=1 trailId += 1 continue end reachedPeaks,trailId = walkPossMoves(topoMap,m,reachedPeaks,trailId) end return reachedPeaks, trailId end peaksScore::Int = 0; trailsScore::Int = 0 trailId::Int = 0 for (i,t) in enumerate(trailheads) if !haskey(reachablePeaks,i); reachablePeaks[i]=[]; end reachedPeaks::Matrix{Bool} = zeros(size(topoMap)) trailId = 0 reachedPeaks,trailId = walkPossMoves(topoMap,t,reachedPeaks,trailId) trailPeaksScore = sum(reachedPeaks) peaksScore += trailPeaksScore trailsScore += trailId end return peaksScore,trailsScore end #getReachablePeaks topoMap::Matrix{Int} = readInput("input/day10Input") trailheads::Vector{Vector{Int}} = getTrailheads(topoMap) @info "Part 1" reachablePeaks = getReachablePeaks(topoMap,trailheads)[1] println("reachable peaks: ",reachablePeaks) @info "Part 2" trailsScore::Int = getReachablePeaks(topoMap,trailheads)[2] println("trails score: $trailsScore")
Raku
Pretty straight-forward problem today.
sub MAIN($input) { my $file = open $input; my @map = $file.slurp.trim.lines>>.comb>>.Int; my @pos-tracking = [] xx 10; for 0..^@map.elems X 0..^@map[0].elems -> ($row, $col) { @pos-tracking[@map[$row][$col]].push(($row, $col).List); } my %on-possible-trail is default([]); my %trail-score-part2 is default(0); for 0..^@pos-tracking.elems -> $height { for @pos-tracking[$height].List -> ($row, $col) { if $height == 0 { %on-possible-trail{"$row;$col"} = set ("$row;$col",); %trail-score-part2{"$row;$col"} = 1; } else { for ((1,0), (-1, 0), (0, 1), (0, -1)) -> @neighbor-direction { my @neighbor-position = ($row, $col) Z+ @neighbor-direction; next if @neighbor-position.any < 0 or (@neighbor-position Z>= (@map.elems, @map[0].elems)).any; next if @map[@neighbor-position[0]][@neighbor-position[1]] != $height - 1; %on-possible-trail{"$row;$col"} ∪= %on-possible-trail{"{@neighbor-position[0]};{@neighbor-position[1]}"}; %trail-score-part2{"$row;$col"} += %trail-score-part2{"{@neighbor-position[0]};{@neighbor-position[1]}"}; } } } } my $part1-solution = @pos-tracking[9].map({%on-possible-trail{"{$_[0]};{$_[1]}"}.elems}).sum; say "part 1: $part1-solution"; my $part2-solution = @pos-tracking[9].map({%trail-score-part2{"{$_[0]};{$_[1]}"}}).sum; say "part 2: $part2-solution"; }
straight-forward
Maybe for you 😅
Dart
I dug out the hill-climbing trail-walking code from 2022 Day 12, put it up on blocks, and stripped all the weirdness out of it.
Ended up with just a simple flood-fill from each trailhead, so it turns out I only actually used the Graph and Node classes which I then also stripped out…
import 'dart:math'; import 'package:collection/collection.dart'; import 'package:more/more.dart'; late Map<Point, int> nodes; late Map<Point, List> nexts; /// Parse the lines, build up nodes and nexts, return starts. List<Point> parse(ls) { nodes = { for (var y in 0.to(ls.length)) for (var x in 0.to(ls.first.length)) Point(x, y): int.parse(ls[y][x]) }; nexts = Map.fromEntries(nodes.keys.map((n) => MapEntry( n, [Point(0, 1), Point(0, -1), Point(1, 0), Point(-1, 0)] .map((d) => n + d) .where((d) => (nodes[d] ?? -1) - nodes[n]! == 1) .toList()))); return nodes.keys.where((e) => nodes[e] == 0).toList(); } /// Given a starting node, return all valid paths to any '9' on the grid. Set paths(Point here, [Set sofar = const {}]) { if (nodes[here]! == 9) return {sofar}; return nexts[here]! .where((e) => !sofar.contains(e)) .fold({}, (s, f) => s..addAll(paths(f, sofar.toSet()..add(f)))); } /// Finds all paths from each start, then apply the fn to each and sum. count(lines, int Function(Set) fn) => parse(lines).map(paths).map<int>(fn).sum; part1(lines) => count(lines, (e) => e.map((p) => p.last).toSet().length); part2(lines) => count(lines, (e) => e.length);