Day 12: Garden Groups

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • @mykl
    link
    128 minutes ago

    Uiua

    Takes about 3 seconds to solve both parts for live data, caused primarily by my terrible fill function in FieldCoords which repeatedly refills and dedups already discovered cells. I promised myself when I wrote it that I would revisit it, but I really can’t be bothered right now. Sorry Kai.

    Data   ← ⊜∘⊸≠@\n "AAAA\nBBCD\nBBCC\nEEEC"
    N₄     ← [¯1_0 1_0 0_¯1 0_1]               # Four orthogonal neighbours.
    Fences ← /+≡(/+=0⬚0⊡+N₄¤)⊙¤⊚.°⊚            # Fences for a field, by looking for edges.
    Cs     ← [0 1 1 0 1 0 2 1 1 2 0 1 0 1 1 0] # Number of corners keyed by bitarray of 2x2 grid.
    Sides  ← /+/+⧈(⊡:Cs°⋯♭)2_2⌝↘¯1_¯1⌝↘1_1°⊚   # Add border, look for corners in 2x2 windows.
    
    ValidN₄     ← ▽≠@_⬚@_⊡:Data.+N₄¤
    FieldCoords ← ⍥(◴⍆⊂▽⊙:=⊢∩(⊡:Data),,⟜(⍆◴∧(⊂ValidN₄)⊙[]))∞¤  # Terrible fill to get a list of coords given a starting point.
    Fields      ← ↘1{⍢(:⊙▽:¬∈,,FieldCoords⊢.|>0⧻)}⊙◌↯∞_2°⊡Data # Repeatedly find next fields coords until grid exhausted.
    
    /+×≡◇⊃⧻Fences Fields
    /+×≡◇⊃⧻Sides Fields
    
  • @iAvicenna
    link
    1
    edit-2
    1 hour ago

    Python

    Had to rely on an external polygon library for this one. Part 1 could have been easily done without it but part 2 would be diffucult (you can even use the simplify function to count the number of straight edges in internal and external boundaries modulo checking the collinearity of the start and end of the boundary)

    
    import numpy as np
    from pathlib import Path
    from shapely import box, union, MultiPolygon, Polygon, MultiLineString
    cwd = Path(__file__).parent
    
    def parse_input(file_path):
      with file_path.open("r") as fp:
        garden = list(map(list, fp.read().splitlines()))
    
      return np.array(garden)
    
    def get_polygon(plant, garden):
      coords = list(map(tuple, list(np.argwhere(garden==plant))))
      for indc,coord in enumerate(coords):
    
        box_next = box(xmin=coord[0], ymin=coord[1], xmax=coord[0]+1,
                       ymax=coord[1]+1)
    
        if indc==0:
          poly = box_next
        else:
          poly = union(poly, box_next)
    
      if isinstance(poly, Polygon):
        poly = MultiPolygon([poly])
    
      return poly
    
    def are_collinear(coords, tol=None):
        coords = np.array(coords, dtype=float)
        coords -= coords[0]
        return np.linalg.matrix_rank(coords, tol=tol)==1
    
    def simplify_boundary(boundary):
    
      # if the object has internal and external boundaries then split them
      # and recurse
      if isinstance(boundary, MultiLineString):
        coordinates = []
        for b in boundary.geoms:
          coordinates.append(simplify_boundary(b))
        return list(np.concat(coordinates, axis=0))
    
      simple_boundary = boundary.simplify(0)
      coords = [np.array(x) for x in list(simple_boundary.coords)[:-1]]
      resolved = False
    
      while not resolved:
    
        end_side=\
        np.concat([x[:,None] for x in [coords[-1], coords[0], coords[1]]], axis=1)
    
        if  are_collinear(end_side.T):
          coords = coords[1:]
        else:
          resolved = True
    
      return coords
    
    def solve_problem(file_name):
    
      garden = parse_input(Path(cwd, file_name))
      unique_plants = set(garden.flatten())
      total_price = 0
      discounted_total_price = 0
    
      for plant in unique_plants:
    
        polygon = get_polygon(plant, garden)
    
        for geom in polygon.geoms:
          coordinates = simplify_boundary(geom.boundary)
          total_price += geom.area*geom.length
          discounted_total_price += geom.area*len(coordinates)
    
      return int(total_price), int(discounted_total_price)
    
    
  • @mykl
    link
    3
    edit-2
    6 hours ago

    Dart

    Filling to find regions was easy. Counting areas was easy. Counting fences was okay. Counting sides caused me a lot of frustration as I tried and rejected a number of approaches, eventually arriving at a reasonably simple corner-counting approach. None of this was helped by all the examples lacking at least two important layouts, causing today to be the first day that I ran out of hints for wrong answers :-(.

    (corners is where the magic happens)

    70 or so lines, half a second to run, so that's fine for today.
    import 'dart:math';
    import 'package:collection/collection.dart';
    import 'package:more/more.dart';
    
    const List<Point> n4 = [Point(0, 1), Point(0, -1), Point(1, 0), Point(-1, 0)];
    List<Point> n8 = n4 + [Point(1, 1), Point(1, -1), Point(-1, 1), Point(-1, -1)];
    const List<Point> c4 = [Point(0, 0), Point(0, 1), Point(1, 0), Point(1, 1)];
    
    (Map<Point, String>, Map<Point, List<Point>>) parse(ls) {
      var nodes = {
        for (var y in 0.to(ls.length))
          for (var x in 0.to(ls.first.length)) Point<num>(x, y): ls[y][x] as String
      };
      var nexts = Map.fromEntries(nodes.keys.map((n) => MapEntry(
          n,
          n4
              .map((d) => n + d)
              .where((d) => (nodes[d] ?? '') == nodes[n]!)
              .toList())));
      return (nodes, nexts);
    }
    
    (int, Set<Point>) survey(
        Point here, String target, Map<Point<num>, List<Point>> nexts,
        [Set sofar = const {}]) {
      seen.add(here);
      var fences = 4 - nexts[here]!.length;
      var area = {here};
      for (var f in nexts[here]!.where((e) => !seen.contains(e))) {
        var (fs, a) = survey(f, target, nexts, sofar.toSet()..add(f));
        fences += fs;
        area.addAll(a);
      }
      return (fences, area);
    }
    
    late Set<Point> seen;
    List<(int, Set<Point<num>>)> costs(List<String> lines) {
      seen = {};
      var ret = <(int, Set<Point<num>>)>[];
      var (nodes, nexts) = parse(lines);
      var toVisit = nodes.keys.toSet();
      while (toVisit.isNotEmpty) {
        var here = toVisit.first;
        toVisit.remove(here);
        ret.add(survey(here, nodes[here]!, nexts));
        toVisit.removeAll(seen);
      }
      return ret;
    }
    
    Function eq = const ListEquality().equals;
    int corners(Set<Point> points) {
      var border = points.map((e) => n8.map((n) => n + e)).flattenedToSet
        ..addAll(points);
      // A corner is where a 2x2 grid contains one/three in-shape points, or
      // two diagonally-opposite cells
      var corners = 0;
      for (var cell in border) {
        var count = c4.map((e) => points.contains(e + cell)).toList();
        if (count.count((e) => e) % 2 == 1) {
          corners += 1;
        } else {
          if (eq(count, [true, false, false, true]) ||
              eq(count, [false, true, true, false])) {
            corners += 2;
          }
        }
      }
      return corners;
    }
    
    part1(lines) => costs(lines).map((e) => e.first * e.last.length).sum;
    part2(lines) => costs(lines).map((e) => corners(e.last) * e.last.length).sum;
    
  • @[email protected]
    link
    fedilink
    39 hours ago

    C#

    public class Day12 : Solver
    {
      private string[] data;
      private int width, height;
      private Dictionary<int, long> perimeters = [];
      private Dictionary<int, long> areas = [];
      private Dictionary<int, long> sides = [];
      private int region_count;
    
      public void Presolve(string input) {
        data = input.Trim().Split("\n").ToArray();
        height = data.Length;
        width = data[0].Length;
        var graph_cc = MakeGraph(false);
        var cc = new ConnectedComponentsAlgorithm<Point, PointEdge>(graph_cc);
        cc.Compute();
        var graph_all = MakeGraph(true);
        Dictionary<(int Component, int Y), List<int>> x_sides = [];
        Dictionary<(int Component, int X), List<int>> y_sides = [];
        var search = new UndirectedBreadthFirstSearchAlgorithm<Point, PointEdge>(graph_all);
        search.SetRootVertex((0, 0));
        search.FinishVertex += vertex => {
          if (IsWithinBounds(vertex.Item1, vertex.Item2)) {
            int component = cc.Components[vertex];
            areas.TryAdd(component, 0L);
            areas[component] += 1;
          }
        };
        search.ExamineEdge += edge => {
          var (si, ti) = (IsWithinBounds(edge.Source), IsWithinBounds(edge.Target));
          bool border = si != ti || cc.Components[edge.Source] != cc.Components[edge.Target];
          if (si && border) {
            int component = cc.Components[edge.Source];
            perimeters.TryAdd(component, 0L);
            perimeters[component] += 1;
            if (edge.Source.Item1 == edge.Target.Item1) {
              int y = Math.Min(edge.Source.Item2, edge.Target.Item2);
              x_sides.TryAdd((component, y), []);
              x_sides[(component, y)].Add(edge.Source.Item2 > edge.Target.Item2 ? edge.Source.Item1 : -edge.Source.Item1 - 5);
            } else {
              int x = Math.Min(edge.Source.Item1, edge.Target.Item1);
              y_sides.TryAdd((component, x), []);
              y_sides[(component, x)].Add(edge.Source.Item1 > edge.Target.Item1 ? edge.Source.Item2 : -edge.Source.Item2 - 5);
            }
          }
        };
        search.Compute();
        region_count = cc.ComponentCount;
        foreach (var side_projection in x_sides) {
          side_projection.Value.Sort();
          sides.TryAdd(side_projection.Key.Component, 0);
          int last_x = int.MinValue;
          foreach (var x in side_projection.Value) {
            if (x != (last_x + 1)) sides[side_projection.Key.Component] += 1;
            last_x = x;
          }
        }
        foreach (var side_projection in y_sides) {
          side_projection.Value.Sort();
          sides.TryAdd(side_projection.Key.Component, 0);
          int last_y = int.MinValue;
          foreach (var y in side_projection.Value) {
            if (y != (last_y + 1)) sides[side_projection.Key.Component] += 1;
            last_y = y;
          }
        }
        foreach (var component in Enumerable.Range(0, region_count)) {
          if (!areas.ContainsKey(component)) continue;
        }
      }
    
      public string SolveFirst() =>
        Enumerable.Range(0, region_count)
          .Where(component => areas.ContainsKey(component))
          .Select(component => areas[component] * perimeters[component]).Sum().ToString();
    
      public string SolveSecond() =>
        Enumerable.Range(0, region_count)
          .Where(component => areas.ContainsKey(component))
          .Select(component => areas[component] * sides[component]).Sum().ToString();
    
      private record struct PointEdge(Point Source, Point Target): IEdge<Point>;
    
      private IUndirectedGraph<Point, PointEdge> MakeGraph(bool with_edges_between_plots)=>
        new DelegateUndirectedGraph<Point, PointEdge>(GetVertices(), with_edges_between_plots? GetAllEdges : GetEdgesWithoutBorders, false);
    
      private bool IsWithinBounds(int x, int y) => x >= 0 && x < width && y >= 0 && y < height;
      private bool IsWithinBounds(Point p) => IsWithinBounds(p.Item1, p.Item2);
    
      private readonly (int, int)[] directions = [(-1, 0), (0, -1), (1, 0), (0, 1)];
    
      private bool GetEdgesWithoutBorders(Point arg, out IEnumerable<PointEdge> result) {
        List<PointEdge> result_list = [];
        var (x, y) = arg;
        bool inside = IsWithinBounds(x, y);
        foreach (var (dx, dy) in directions) {
          var (ox, oy) = (x + dx, y + dy);
          if (!inside || !IsWithinBounds(ox, oy)) continue;
          if (data[y][x] == data[oy][ox]) result_list.Add(new(arg, (ox, oy)));
        }
        result = result_list;
        return true;
      }
    
      private bool GetAllEdges(Point arg, out IEnumerable<PointEdge> result) {
        List<PointEdge> result_list = [];
        var (x, y) = arg;
        foreach (var (dx, dy) in directions) {
          var (ox, oy) = (x + dx, y + dy);
          if (ox >= -1 && ox <= width && oy >= -1 && oy <= height) result_list.Add(new(arg, (ox, oy)));
        }
        result = result_list;
        return true;
      }
    
      private IEnumerable<(int, int)> GetVertices() => Enumerable.Range(-1, width + 2).SelectMany(x => Enumerable.Range(-1, height + 2).Select(y => (x, y)));
    }
    
  • @VegOwOtenks
    link
    English
    2
    edit-2
    6 hours ago

    Haskell

    Detecting regions is a floodfill. For Part 2, I select all adjacent tiles that are not part of a region and group them by the direction relative to the closest region tile, then group adjacent tiles with the same direction again and count.

    Edit:

    Takes 0.06s

    Reveal Code
    import Control.Arrow
    
    import Data.Array.Unboxed (UArray)
    import Data.Set (Set)
    import Data.Map (Map)
    
    import qualified Data.List as List
    import qualified Data.Set as Set
    import qualified Data.Map as Map
    import qualified Data.Array.Unboxed as UArray
    
    parse :: String -> UArray (Int, Int) Char
    parse s = UArray.listArray ((1, 1), (n, m)) . filter (/= '\n') $ s
            where
                    n = takeWhile (/= '\n') >>> length $ s
                    m = filter (== '\n') >>> length >>> pred $ s
    
    neighborCoordinates (p1, p2) = [(p1-1, p2), (p1, p2-1), (p1, p2+1), (p1+1, p2)]
    
    allNeighbors p a = neighborCoordinates
            >>> filter (UArray.inRange (UArray.bounds a))
            $ p
    
    regionNeighbors p a = allNeighbors p
            >>> filter ((a UArray.!) >>> (== pTile))
            $ a
            where
                    pTile = a UArray.! p
    
    floodArea :: Set (Int, Int) -> Set (Int, Int) -> UArray (Int, Int) Char -> Set (Int, Int)
    floodArea e o a
            | Set.null o = e
            | otherwise  = floodArea e' o' a
            where
                    e' = Set.union e o
                    o' = Set.fold (Set.union . Set.fromDistinctAscList .  (filter (`Set.notMember` e')) . (flip regionNeighbors a)) Set.empty o
    
    findRegions garden = findRegions' (Set.fromList . UArray.indices $ garden) garden
    
    findRegions' remainingIndices garden
            | Set.null remainingIndices = []
            | otherwise = removedIndices : findRegions' remainingIndices' garden
            where
                    removedIndices = floodArea Set.empty (Set.singleton . Set.findMin $ remainingIndices) garden
                    remainingIndices' = Set.difference remainingIndices removedIndices
    
    perimeter region = Set.fold ((+) . length . filter (`Set.notMember` region) . neighborCoordinates) 0 region
    
    part1 rs = map (Set.size &&& perimeter)
            >>> map (uncurry (*))
            >>> sum
            $ rs
    
    turnLeft ( 0, 1) = (-1, 0) -- right
    turnLeft ( 0,-1) = ( 1, 0) -- left
    turnLeft ( 1, 0) = ( 0, 1) -- down
    turnLeft (-1, 0) = ( 0,-1) -- up
    
    turnRight = turnLeft . turnLeft . turnLeft
    
    move (py, px) (dy, dx) = (py + dy, px + dx)
    
    tupleDelta (y1, x1) (y2, x2) = (y1-y2, x1-x2)
    
    isRegionInner region p = all (`Set.member` region) (neighborCoordinates p)
    
    groupEdges d ps
            | Set.null ps = []
            | otherwise   = collectedEdge : groupEdges d ps'
            where
                    ps' = Set.difference ps collectedEdge
                    collectedEdge = Set.union leftPoints rightPoints
                    leftPoints = iterate (move dl)
                            >>> takeWhile (`Set.member` ps)
                            >>> Set.fromList
                            $ currentPoint
                    rightPoints = iterate (move dr)
                            >>> takeWhile (`Set.member` ps)
                            >>> Set.fromList
                            $ currentPoint
                    currentPoint = Set.findMin ps
                    dr = turnRight d
                    dl = turnLeft  d
    
    linearPerimeter region = Map.foldr ((+) . length) 0 $ groupedEdges
            where 
                    edgeTiles = Set.filter (not . isRegionInner region) region
                    regionNeighbors = List.concatMap (\ p -> map (p,). filter (`Set.notMember` region) . neighborCoordinates $ p) . Set.toList $ region
                    groupedNeighbors = List.map (uncurry tupleDelta &&& Set.singleton . snd)
                            >>> Map.fromListWith (Set.union)
                            $ regionNeighbors
                    groupedEdges = Map.mapWithKey groupEdges
                            $ groupedNeighbors
    
    part2 rs = map (Set.size &&& linearPerimeter)
            >>> map (uncurry (*))
            >>> sum
            $ rs
    
    main = getContents
            >>= print
            . (part1 &&& part2)
            . findRegions
            . parse
    
  • lwhjp
    link
    fedilink
    29 hours ago

    Haskell

    This was a bit of a fiddly one. There’s probably scope for golfing it down some more, but I’ve had enough for today :3

    Solution
    import Control.Arrow
    import Data.List
    import Data.Map (Map)
    import Data.Map qualified as Map
    import Data.Set (Set)
    import Data.Set qualified as Set
    
    readInput :: String -> Map (Int, Int) Char
    readInput s = Map.fromList [((i, j), c) | (i, l) <- zip [0 ..] (lines s), (j, c) <- zip [0 ..] l]
    
    (i1, j1) .+. (i2, j2) = (i1 + i2, j1 + j2)
    
    (i1, j1) .-. (i2, j2) = (i1 - i2, j1 - j2)
    
    directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] :: [(Int, Int)]
    
    edges = zip ps (drop 1 ps) :: [((Int, Int), (Int, Int))]
      where
        ps = [(0, 1), (1, 1), (1, 0), (0, 0), (0, 1)]
    
    regions :: Map (Int, Int) Char -> [Set (Int, Int)]
    regions = unfoldr (fmap (uncurry removeRegion) . Map.minViewWithKey)
      where
        removeRegion (p, t) = go Set.empty (Set.singleton p)
          where
            go r ps plots
              | Set.null ps = (r, plots)
              | otherwise =
                  let ps' =
                        Set.filter (\p -> plots Map.!? p == Just t) $
                          Set.fromList (concatMap adjacent ps) Set.\\ ps
                   in go (Set.union r ps) ps' (Map.withoutKeys plots ps')
            adjacent = (`map` directions) . (.+.)
    
    boundary :: Set (Int, Int) -> Set ((Int, Int), (Int, Int))
    boundary region =
      Set.fromList $
        [ (p .+. e1, p .+. e2)
          | p <- Set.elems region,
            (d, (e1, e2)) <- zip directions edges,
            p .+. d `Set.notMember` region
        ]
    
    perimeter :: Set (Int, Int) -> [[(Int, Int)]]
    perimeter = unfoldr (fmap (uncurry removeChain) . Set.minView) . boundary
      where
        removeChain e@(e1, e2) es = first (e1 :) $ go [] e es
        go c e@(e1, e2) es =
          case find ((== e2) . fst) es of
            Nothing -> (e1 : c, es)
            Just e' -> go (e1 : c) e' (Set.delete e' es)
    
    countSides :: [(Int, Int)] -> Int
    countSides ps = length $ group $ zipWith (.-.) (drop 1 ps) ps
    
    main = do
      input <- readInput <$> readFile "input12"
      let rs = map (Set.size &&& perimeter) $ regions input
      print . sum $ map (\(a, p) -> a * sum (map (subtract 1 . length) p)) rs
      print . sum $ map (\(a, p) -> a * sum (map countSides p)) rs
    
    • @VegOwOtenks
      link
      English
      2
      edit-2
      6 hours ago

      Thank you for showing the floodfill-algorithm using explored/open sets, mine was hellish inefficiently, reminds me of A*.

  • janAkali
    link
    fedilink
    English
    2
    edit-2
    8 hours ago

    Nim

    Runtime: 7ms 3.18 ms

    Part 1: I use flood fill to count all grouped plants and keep track of each border I see.
    Part 2: I use an algorithm similar to “merge overlapping ranges” to count spans of borders (border orientation matters) in each row and column, for each group. Resulting code (hidden under spoiler) is a little messy and not very DRY (it’s completely soaked).

    Edit: refactored solution, removed some very stupid code.

    proc groupSpans()
    proc groupSpans(borders: seq[(Vec2, Dir)]): int =
      ## returns number of continuous groups of cells with same Direction
      ## and on the same row or column
      var borders = borders
      var horiz = borders.filterIt(it[1] in {U, D})
      while horiz.len > 0:
        var sameYandDir = @[horiz.pop()]
        var curY = sameYandDir[^1][0].y
        var curDir = sameYandDir[^1][1]
        for i in countDown(horiz.high, 0):
          if horiz[i][0].y == curY and horiz[i][1] == curDir:
            sameYandDir.add horiz[i]
            horiz.del i
        sameYandDir.sort((a,b)=>cmp(a[0].x, b[0].x), Descending)
    
        var cnt = 1
        for i, (p,d) in sameYandDir.toOpenArray(1, sameYandDir.high):
          if sameYandDir[i][0].x - p.x  != 1: inc cnt
        result += cnt
    
      var vert = borders.filterIt(it[1] in {L, R})
      while vert.len > 0:
        var sameXandDir = @[vert.pop()]
        var curX = sameXandDir[^1][0].x
        var curDir = sameXandDir[^1][1]
        for i in countDown(vert.high, 0):
          if vert[i][0].x == curX and vert[i][1] == curDir:
            sameXandDir.add vert[i]
            vert.del i
        sameXandDir.sort((a,b)=>cmp(a[0].y, b[0].y), Descending)
    
        var cnt = 1
        for i, (p,d) in sameXandDir.toOpenArray(1, sameXandDir.high):
          if sameXandDir[i][0].y - p.y  != 1: inc cnt
        result += cnt
    
    type
      Dir = enum L,R,U,D
      Vec2 = tuple[x,y: int]
      GroupData = object
        plantCount: int
        borders: seq[(Vec2, Dir)]
    
    const Adjacent: array[4, Vec2] = [(-1,0),(1,0),(0,-1),(0,1)]
    
    proc solve(input: string): AOCSolution[int, int] =
      let grid = input.splitLines()
      var visited = newSeqWith(grid.len, newSeq[bool](grid[0].len))
      var groups: seq[GroupData]
    
      proc floodFill(pos: Vec2, plant: char, groupId: int) =
        visited[pos.y][pos.x] = true
        inc groups[groupId].plantCount
        for di, d in Adjacent:
          let pd: Vec2 = (pos.x+d.x, pos.y+d.y)
          if pd.x < 0 or pd.y < 0 or pd.x > grid[0].high or pd.y > grid.high or
            grid[pd.y][pd.x] != plant:
            groups[groupId].borders.add (pd, Dir(di))
            continue
          if visited[pd.y][pd.x]: continue
          floodFill(pd, plant, groupId)
    
      for y in 0..grid.high:
        for x in 0..grid[0].high:
          if visited[y][x]: continue
          groups.add GroupData()
          floodFill((x,y), grid[y][x], groups.high)
    
      for gid, group in groups:
        result.part1 += group.plantCount * group.borders.len
        result.part2 += group.plantCount * group.borders.groupSpans()
    

    Codeberg repo