Energy storage tech is only barely in its infancy since fossil fuel corps have stood on its neck for so long.
It’s a really weird take to insist that batteries can’t work when we’ve barely even tried. It’s like the 2 year old saying it’s impossible because he’s been trying to stick the star through the circle hole, and that we should just be happy with stars not being in the box.
Ecologically damaging like lithium is still a case of star in circle hole: we’re only just scratching the surface of grid scale energy storage.
I want to see more stuff like grid scale flywheel energy storage. Dead simple tech and if it can live power by even 6 hourait’s immediately useful, 24 and that’s 90% of that you need
Many battery tech are dead simple. It is a rolled layer of specific materials at precise thickness but really not rocket science, especially when you are not concerned about per kg efficiency. Flywheels are much more complicated, requiring well maintained mechanics, a motor and a dynamo.
It takes a 260kg flywheel with all its mass at the edge spinning at mach 0.5 to store 1kWh.
If you want simple supply chains, build a carnot battery. It’ll be half as efficient, but far more compact (if graphite is the storage, more compact than LFP) and long lasting.
If you want a simple machine, buy a battery. The only hard part is high purity.
I feel that you have put it best. We are still developing our technology with energy storage. The current technology is not ideal, but as we develop the need we may find ourselves likewise developing energy storage that is more efficient.
Culturally this is never gonna happen, obviously.
Especially since it’s not necessary.
Energy storage tech is only barely in its infancy since fossil fuel corps have stood on its neck for so long.
It’s a really weird take to insist that batteries can’t work when we’ve barely even tried. It’s like the 2 year old saying it’s impossible because he’s been trying to stick the star through the circle hole, and that we should just be happy with stars not being in the box.
Ecologically damaging like lithium is still a case of star in circle hole: we’re only just scratching the surface of grid scale energy storage.
I want to see more stuff like grid scale flywheel energy storage. Dead simple tech and if it can live power by even 6 hourait’s immediately useful, 24 and that’s 90% of that you need
Many battery tech are dead simple. It is a rolled layer of specific materials at precise thickness but really not rocket science, especially when you are not concerned about per kg efficiency. Flywheels are much more complicated, requiring well maintained mechanics, a motor and a dynamo.
It takes a 260kg flywheel with all its mass at the edge spinning at mach 0.5 to store 1kWh.
If you want simple supply chains, build a carnot battery. It’ll be half as efficient, but far more compact (if graphite is the storage, more compact than LFP) and long lasting.
If you want a simple machine, buy a battery. The only hard part is high purity.
Afaik flywheels are good for smoothing out fluctuations and peaking but not for real storage.
Flow batteries and pumped hydro seem like the solution for durable storage.
I feel that you have put it best. We are still developing our technology with energy storage. The current technology is not ideal, but as we develop the need we may find ourselves likewise developing energy storage that is more efficient.
Tragically, you might be right about reduction in consumption being a cultural non-starter.
As it would make many things much easier but as you pointed out, advances in battery technology can fill some of that gap.