• @[email protected]
    link
    fedilink
    English
    12
    edit-2
    11 months ago

    Also, a Markdown table rendition:

    eu-contribution-per-capita-markdown.r

    if (!require("pacman")) install.packages("pacman")
    pacman::p_load(
                countrycode,
                dplyr,
                r2country,
                simplermarkdown
            )
    
    abs <- read.csv("statista-netcontrib.csv",header = TRUE)
    abs2 <- cbind(abs,name = countrycode(abs$country,"iso2c","country.name")) 
    
    df <- inner_join(country_names, abs2)
    df2 <- inner_join(country_population, df)
    df2$percap <- df2$netcontrib/df2$population2023*1000000
    
    df3 <- arrange(df2,-percap)
    
    md_table(df3)
    

    name percap
    Netherlands 386.91124
    Germany 302.86855
    Denmark 297.09908
    Sweden 267.98643
    Finland 199.90810
    France 181.71677
    Austria 168.68113
    Ireland 136.52768
    Italy 56.76638
    Malta -26.94577
    Spain -40.25217
    Slovenia -182.27546
    Cyprus -187.34343
    Romania -214.99549
    Belgium -250.73894
    Slovakia -257.60767
    Bulgaria -267.84703
    Portugal -299.21568
    Lithuania -300.05251
    Poland -315.86485
    Greece -408.10926
    Hungary -438.25808
    Croatia -449.01298
    Estonia -533.72029
    Latvia -819.79399
    Luxembourg -3056.85909
    • @Whelks_chance
      link
      English
      311 months ago

      This is very clever. Is Lemmy actually running the code to achieve this, or did you paste it just so other people can replicate the process?