I considered deleting the post, but this seems more cowardly than just admitting I was wrong. But TIL something!

  • @fishos
    link
    English
    61 year ago

    The core reason why the infinities are different sized is different. The ways you prove it are different. It’s kinda the first thing you learn when they start teaching you about different types of infinities.

      • @[email protected]
        link
        fedilink
        8
        edit-2
        1 year ago

        Logically this makes some sense, but this is fundamentally not how the math around this concept is built. Both of those infinities are the same size because a simple linear scaling operation lets you convert from one to the other, one-to-one.

        • @PotatoKat
          link
          11 year ago

          The ∞ set between 0 and 1 never reaches 1 or 2 therefore the set of real numbers is valued more. You’re limiting the value of the set because you’re never exceeding a certain number in the count. But all real numbers will (eventually in the infinite) get past 1. Therefore it is higher value.

          The example they’re trying to say is there are more real numbers between 0 and 1 than there are integers counting 1,2,3… In that case the set between 0 and 1 is larger but since it never reaches 1 it has less value.

          Infinity is a concept so you can’t treat it like a direct value.

      • @FishFace
        link
        5
        edit-2
        1 year ago

        There is a function which, for each real number, gives you a unique number between 0 and 1. For example, 1/(1+e^x). This shows that there are no more numbers between 0 and 1 than there are real numbers. The formalisation of this fact is contained in the Cantor-Schröder-Bernstein theorem.