“In 10 years, computers will be doing this a million times faster.” The head of Nvidia does not believe that there is a need to invest trillions of dollars in the production of chips for AI::Despite the fact that Nvidia is now almost the main beneficiary of the growing interest in AI, the head of the company, Jensen Huang, does not believe that

  • @agent_flounder
    link
    English
    29 months ago

    If chips = cpus, here, then I imagine that will hit a limit also (Amdahl’s law).

    • @Buffalox
      link
      English
      49 months ago

      A chip is also called a die, it’s the piece cut out from the wafer, which is then packaged onto a chip package.
      Since traditionally there were always 1 chip per chip package, the 2 words were used almost synonymously.
      I this case it’s basically GPU chips, which AFAIK AMD has already figured out how to use in multi chip packages. Meaning one package contains multiple chips that work “almost” as well as a single chip of similar size.

      The advantage of multichip packages are obvious, production costs are way lower because smaller dies causes lower percentage of flawed dies, and allows for better binning of higher end parts.
      Additionally it allows designs of way more complex packages, than would be possible with monolithic chips. This is the reason AMD has been taking marketshare in server markets from Intel. Because Intel has not been able to match the multichip design AMD introduced with Epyc in 2016/17, which originally was 4 Ryzen chiplets/chips/dies packaged together as one big 32 core server chip. Where the biggest Intel could make was 28 cores.

      But packaging almost 10000 GPU chips together is completely different, and I don’t think that will be relevant within 10 years.

      Amdahls law however is part obvious and part bullshit. Everything your mind is able to do semi efficiently, can be multithreaded, it is very few things that can’t.
      Amdahls law is basically irrelevant with regard to AI, as AI has a lot of patten recognition, and pattern recognition is perfect for multi threading.

      • @TheGrandNagus
        link
        English
        39 months ago

        And to add: currently TSMC nodes have a reticle limit of 858mm². I.e. that’s the largest chips you can make on their wafers. Then in the real world you do it slightly below that.

        Future nodes are reducing this to the 350-450mm² range.

        High end GPUs/HPC cards basically have to go to multi-die, even in the fantasy world of 100% perfect yields.