• @cynar
    link
    English
    09 months ago

    Easy for a remotely advanced military force.

    An explosive drone is easy. Just a small amount of high explosives and an electronic detonator.

    Strobe lights could just be an overdriven LED. It just needs to dazzle optical sensors for a few seconds.

    Chaff is just lightweight foil. It’s effectively an oversized party popper. It’s job is to help overwhelm radar based tracking.

    Software is the hardest bit. At the same time, many computer game ‘AIs’ are good enough at this they need to be dumbed down significantly. It would be more specialised, but only needs to be written once, then rolled out to a fleet.

    Batteries would be a swarms limiting factor. Single shot lithium would likely be the bulk. 5-20 minutes of flight, then it’s dead. Disposables would likely need to be moved into position by other means, either a dedicated transport drone, ground transport, or air drop. Your transport doesn’t need to stay in the combat zone however, it can bug out and be reused. Larger more specialist systems would land and loiter to save batteries, and/or be fuel cell powered.

    Reliability is handled by numbers, losing 10% is fine, when you have 20% extra.

    Computing requires would be met by something like Nvidia’s Jetson range. They are designed for low power, low weight AI processing. Putting a tflop of computing power in the close Comms loop would be simple. The controller would be the most expensive part of the swarm. Not only would it need enough power, both computing and electrical, but also significant Comms capabilities. Radio links, with optical backup would be the workhorse. With a mesh setup, including dummies to help hide it’s location. This is similar to how the display drones work. An expensive hub, serving a cheap swarm.

    While none of this is “easy” for a random guy in a shed, or a terrorist in a cave, it’s child’s play compared to a lot of the tech the US can deploy.

    • @[email protected]
      link
      fedilink
      English
      19 months ago

      It’s not easy for you, me

      For anyone.

      It’s easy for the anime engineers in your head

      No, it’s not just arts and crafts foil put in a box and now you have chaffe

      Again it’s just you romanticised the idea and don’t understand how complicated such a system would be, it’s beyond our capabilities to make

      military hardware is not made to be cool, it’s made to be cost effective and reliable

      • @cynar
        link
        English
        19 months ago

        I design build and operate broadcast equipment. A good chunk goes onto UAVs. I’ve built small quads, and I’ve played around with equipment fully capable of some of the more complex tasks. E.g. live 3D mapping from an airborne capable computer.

        I’m also friends with several people who used to design and build military equipment, including radar systems. Military tech is a weird mix of amazingly high tech, stupidly simple hacks and long lifespan versions of off the shelf technology. I’ve a fairly good feel for how hard or easy a good chunk of the bits are to build. Most of what I suggested I could personally design and build, or easily commission, given some time, a reasonable budget, and access to restricted resources as required.

        In its simplest form, chaff is just tuned lengths of mylar foil. As it flutters, it glitters in a radar beam. This creates a large noise floor. While modern military chaff is more advanced, the old stuff will still cause problems for modern systems. It’s not trying to hide a tank, or pull off a missile’s lock. It’s trying to swamp the signal from a tiny, mostly plastic, drone.

        I’m also not saying to reinvent the wheel. Chaff is now a fairly niche defence tool. It’s hard to use while advancing, and gives away your position. It also needs to be integrated with other countermeasures to be useful. It is still a fairly solved problem however. It’s cheap to make, quick to deploy, and available in bulk, if required.

        Most modern military equipment isn’t expensive due to its inherent nature. It’s expensive because it’s a niche product, and the buyers have deep wallets. The same game plays out in broadcasting. A £100k camera isn’t that much better than a £5k one. It is better however, and buyers are willing to pay for that difference.

        The reverse is also true, as Ukraine is proving. 100 $1k drones are more useful than 1 $100k, ultra capable, drone or missile. The point of a swarm is to allow multiple cheap systems to do the job of a far more expensive weapon.