“All the little bits”

  • @Buddahriffic
    link
    English
    88 months ago

    I’ve always just thought of it as derivatives describe the rate of change and integrals the total of whatever it is that has been done.

    Like if we’re talking about an x that describes position in terms of t, time, dx/dt is the rate of change of position over change in time, or speed. Then ddx/dt is change in speed over change in time, or acceleration. And dddx/dt is rate of change in acceleration over change in time (iirc this is called jerk). And going the opposite way, integrating jerk gets acceleration, then speed, then back to position. But you lose information about the initial values for each along the way (eg speed doesn’t care that you started 10m away from the origin, so integrating speed will only tell you about the change in position due to speed).

    • Clay_pidgin
      link
      fedilink
      English
      28 months ago

      That’s how I thought of it too. I really liked calculus; being able to measure another part of the graph was interesting to me.