Day 11: Plutonian Pebbles

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • @mykl
    link
    1
    edit-2
    2 hours ago

    Uiua

    I thought this was going to be trivial to implement in Uiua, but I managed to blow the stack, meaning I had to set an environment variable in order to get it to run. That doesn’t work in Uiua Pad, so for any counts larger than 15 you need to run it locally. Built-in memoisation though so that’s nice.

    # NB Needs env var UIUA_RECURSION_LIMIT=300
    Data  ←  ⊜⋕⊸≠@\s "125 17"
    Next  ← ⍣([1] °0|[×2024] °1◿2⧻°⋕.|⍜°⋕(↯2_∞))
    Count ← |2 memo(⨬(1|/+≡Count¤-1⊙Next)≠0.) # rounds, stone
    ≡(&p/+≡Count¤: Data)[25 75]
    
  • @iAvicenna
    link
    26 hours ago

    Python

    I initially cached the calculate_next function but honestly number of unique numbers don’t grow that much (couple thousands) so I did not feel a difference when I removed the cache. Using a dict just blazes through the problem.

    from pathlib import Path
    from collections import defaultdict
    cwd = Path(__file__).parent
    
    def parse_input(file_path):
      with file_path.open("r") as fp:
        numbers = list(map(int, fp.read().splitlines()[0].split(' ')))
    
      return numbers
    
    def calculate_next(val):
    
      if val == 0:
        return [1]
      if (l:=len(str(val)))%2==0:
        return [int(str(val)[:int(l/2)]), int(str(val)[int(l/2):])]
      else:
        return [2024*val]
    
    def solve_problem(file_name, nblinks):
    
      numbers = parse_input(Path(cwd, file_name))
      nvals = 0
    
      for indt, node in enumerate(numbers):
    
        last_nodes = {node:1}
        counter = 0
    
        while counter<nblinks:
          new_nodes = defaultdict(int)
    
          for val,count in last_nodes.items():
            val_next_nodes = calculate_next(val)
    
            for node in val_next_nodes:
              new_nodes[node] += count
    
          last_nodes = new_nodes
          counter += 1
        nvals += sum(last_nodes.values())
    
      return nvals
    
    
  • @[email protected]
    link
    fedilink
    15 hours ago

    C

    Started out a bit sad that this problem really seemed to call for hash tables - either for storing counts for an iterative approach, or to memoize a recursive one.

    Worried that the iterative approach would have me doing problematic O(n^2) array scans I went with recursion and a plan to memoize only the first N integers in a flat array, expecting low integers to be much more frequent (and dense) than higher ones.

    After making an embarrassing amount of mistakes it worked out beautifully with N=1m (testing revealed that to be about optimal). Also applied some tail recursion shortcuts where possible.

    day11  0:00.01  6660 Kb  0+1925 faults
    
    Code
    #include "common.h"
    
    /* returns 1 and splits x if even-digited, 0 otherwise */
    static int
    split(uint64_t x, uint64_t *a, uint64_t *b)
    {
    	uint64_t p;
    	int n, i;
    
    	if (!x) return 0;
    	for (n=0, p=1; p<=x;  n++, p*=10) ; if (n%2) return 0;
    	for (i=0, p=1; i<n/2; i++, p*=10) ;
    	*a = x/p;
    	*b = x%p; return 1;
    }
    
    /*
     * recur() is memoized in mem[]. Testing found the size MEMZ to be optimal:
     * lowering siginificantly reduced hits, but raising tenfold didn't add a
     * single hit.
     */
    
    #define MEMZ (1024*1024)
    static uint64_t mem[MEMZ][76];
    
    static uint64_t
    recur(uint64_t v, int n)
    {
    	uint64_t a,b;
    
    	if (n<1 ) return 1;
    	if (v==0) return recur(1, n-1);
    	if (v<10) return recur(v*2024, n-1);
    	if (v<MEMZ && mem[v][n]) return mem[v][n];
    	if (!split(v, &a, &b))   return recur(v*2024, n-1);
    
    	return v<MEMZ ? mem[v][n] =
    	    recur(a, n-1) + recur(b, n-1) :
    	    recur(a, n-1) + recur(b, n-1);
    }
    
    int
    main(int argc, char **argv)
    {
    	uint64_t p1=0,p2=0, val;
    
    	if (argc > 1)
    		DISCARD(freopen(argv[1], "r", stdin));
    
    	while (scanf(" %"SCNu64, &val) == 1) {
    		p1 += recur(val, 25);
    		p2 += recur(val, 75);
    	}
    
    	printf("10: %"PRId64" %"PRId64"\n", p1, p2);
    	return 0;
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day11.c

  • @LeixB
    link
    26 hours ago

    Haskell

    import Data.Monoid
    import Control.Arrow
    
    data Tree v = Tree (Tree v) v (Tree v)
    
    -- https://stackoverflow.com/questions/3208258
    memo1 f = index nats
      where
        nats = go 0 1
        go i s = Tree (go (i + s) s') (f i) (go (i + s') s')
          where
            s' = 2 * s
        index (Tree l v r) i
            | i < 0 = f i
            | i == 0 = v
            | otherwise = case (i - 1) `divMod` 2 of
                (i', 0) -> index l i'
                (i', 1) -> index r i'
    
    memo2 f = memo1 (memo1 . f)
    
    blink = memo2 blink'
      where
        blink' c n
            | c == 0 = 1
            | n == 0 = blink c' 1
            | even digits = blink c' l <> blink c' r
            | otherwise = blink c' $ n * 2024
          where
            digits = succ . floor . logBase 10 . fromIntegral $ n
            (l, r) = n `divMod` (10 ^ (digits `div` 2))
            c' = pred c
    
    doBlinks n = getSum . mconcat . fmap (blink n)
    part1 = doBlinks 25
    part2 = doBlinks 75
    
    main = getContents >>= print . (part1 &&& part2) . fmap read . words
    
  • @[email protected]
    link
    fedilink
    38 hours ago

    Rust

    Part 2 is solved with recursion and a cache, which is indexed by stone numbers and remaining rounds and maps to the previously calculated expansion size. In my case, the cache only grew to 139320 entries, which is quite reasonable given the size of the result.

    Solution
    use std::collections::HashMap;
    
    fn parse(input: String) -> Vec<u64> {
        input
            .split_whitespace()
            .map(|w| w.parse().unwrap())
            .collect()
    }
    
    fn part1(input: String) {
        let mut stones = parse(input);
        for _ in 0..25 {
            let mut new_stones = Vec::with_capacity(stones.len());
            for s in &stones {
                match s {
                    0 => new_stones.push(1),
                    n => {
                        let digits = s.ilog10() + 1;
                        if digits % 2 == 0 {
                            let cutoff = 10u64.pow(digits / 2);
                            new_stones.push(n / cutoff);
                            new_stones.push(n % cutoff);
                        } else {
                            new_stones.push(n * 2024)
                        }
                    }
                }
            }
            stones = new_stones;
        }
        println!("{}", stones.len());
    }
    
    fn expansion(s: u64, rounds: u32, cache: &mut HashMap<(u64, u32), u64>) -> u64 {
        // Recursion anchor
        if rounds == 0 {
            return 1;
        }
        // Calculation is already cached
        if let Some(res) = cache.get(&(s, rounds)) {
            return *res;
        }
    
        // Recurse
        let res = match s {
            0 => expansion(1, rounds - 1, cache),
            n => {
                let digits = s.ilog10() + 1;
                if digits % 2 == 0 {
                    let cutoff = 10u64.pow(digits / 2);
                    expansion(n / cutoff, rounds - 1, cache) +
                    expansion(n % cutoff, rounds - 1, cache)
                } else {
                    expansion(n * 2024, rounds - 1, cache)
                }
            }
        };
        // Save in cache
        cache.insert((s, rounds), res);
        res
    }
    
    fn part2(input: String) {
        let stones = parse(input);
        let mut cache = HashMap::new();
        let sum: u64 = stones.iter().map(|s| expansion(*s, 75, &mut cache)).sum();
        println!("{sum}");
    }
    
    util::aoc_main!();
    

    Also on github

  • @Acters
    link
    3
    edit-2
    9 hours ago

    Python

    Part 1: ~2 milliseconds, Part 2: ~35 milliseconds, Total Time: ~35 milliseconds
    You end up doing part 1 at the same time as part 2 but because of how Advent of Code works, you need to rerun the code after part 1 is solved. so Part 2 is technically total time.

    Fast Code
    from time import time_ns
    
    transform_cache = {}
    
    def transform(current_stone):
        if current_stone == "0":
            res = ["1"]
        else:
            length = len(current_stone)
            if length % 2 == 0:
                mid = length // 2
                res = [str(int(current_stone[:mid])), str(int(current_stone[mid:]))]
            else:
                res = [str(int(current_stone) * 2024)]
        transform_cache[current_stone] = res
        return res
    
    def main(initial_stones):
        stones_count = {}
        for stone in initial_stones:
            stones_count[stone] = stones_count.get(stone, 0) + 1
        part1 = 0
        for i in range(75):
            new_stones_count = {}
            for stone, count in stones_count.items():
                for r in (transform_cache.get(stone) if stone in transform_cache else transform(stone)):
                    new_stones_count[r] = new_stones_count.get(r, 0) + count
            stones_count = new_stones_count
            if i == 24:
                part1 = sum(stones_count.values())
        return part1,sum(stones_count.values())
    
    if __name__ == "__main__":
        with open('input', 'r') as f:
            input_data = f.read().replace('\r', '').replace('\n', '').split()
        start_time = time_ns()
        part_one, part_two = main(input_data)
        stop_time = time_ns() - start_time
        time_len = min(9, ((len(str(stop_time))-1)//3)*3)
        time_conversion = {9: 'seconds', 6: 'milliseconds', 3: 'microseconds', 0: 'nanoseconds'}
        print(f"Part 1: {part_one}\nPart 2: {part_two}\nProcessing Time: {stop_time / (10**time_len)} {time_conversion[time_len]}")
    
    
    • @[email protected]OPM
      link
      fedilink
      14 hours ago

      Stepping through this code is what made it click for me, thanks. I was really mentally locked in on “memoizing” of the transform function, instead of realizing that the transform function only needs to be applied once per stone value.

      Yours is still a lot faster than my rust version, so i’ll have to work out what is happening there.

  • @mykl
    link
    2
    edit-2
    2 hours ago

    Dart

    I really wish Dart had memoising built in. Maybe the new macro feature will allow this to happen, but in the meantime, here’s my hand-rolled solution.

    import 'package:collection/collection.dart';
    
    var counter_ = <(int, int), int>{};
    int counter(s, [r = 75]) => counter_.putIfAbsent((s, r), () => _counter(s, r));
    int _counter(int stone, rounds) =>
        (rounds == 0) ? 1 : next(stone).map((e) => counter(e, rounds - 1)).sum;
    
    List<int> next(int s) {
      var ss = s.toString(), sl = ss.length;
      if (s == 0) return [1];
      if (sl.isOdd) return [s * 2024];
      return [ss.substring(0, sl ~/ 2), ss.substring(sl ~/ 2)]
          .map(int.parse)
          .toList();
    }
    
    solve(List<String> lines) => lines.first.split(' ').map(int.parse).map(counter).sum;
    
  • Ananace
    link
    fedilink
    310 hours ago

    And now we get into the days where caching really is king. My first attempt didn’t go so well, I tried to handle the full list result as one cache step, instead of individually caching the result of calculating each stone per step.

    I think my original attempt is still calculating at home, but I finished up this much better version on the trip to work.
    All hail public transport.

    C#
    List<long> stones = new List<long>();
    public void Input(IEnumerable<string> lines)
    {
      stones = string.Concat(lines).Split(' ').Select(v => long.Parse(v)).ToList();
    }
    
    public void Part1()
    {
      var expanded = TryExpand(stones, 25);
    
      Console.WriteLine($"Stones: {expanded}");
    }
    public void Part2()
    {
      var expanded = TryExpand(stones, 75);
    
      Console.WriteLine($"Stones: {expanded}");
    }
    
    public long TryExpand(IEnumerable<long> stones, int steps)
    {
      if (steps == 0)
        return stones.Count();
      return stones.Select(s => TryExpand(s, steps)).Sum();
    }
    Dictionary<(long, int), long> cache = new Dictionary<(long, int), long>();
    public long TryExpand(long stone, int steps)
    {
      var key = (stone, steps);
      if (cache.ContainsKey(key))
        return cache[key];
    
      var result = TryExpand(Blink(stone), steps - 1);
      cache[key] = result;
      return result;
    }
    
    public IEnumerable<long> Blink(long stone)
    {
      if (stone == 0)
      {
        yield return 1;
        yield break;
      }
      var str = stone.ToString();
      if (str.Length % 2 == 0)
      {
        yield return long.Parse(str[..(str.Length / 2)]);
        yield return long.Parse(str[(str.Length / 2)..]);
        yield break;
      }
      yield return stone * 2024;
    }
    
  • @VegOwOtenks
    link
    English
    211 hours ago

    Haskell

    Sometimes I want something mutable, this one takes 0.3s, profiling tells me 30% of my time is spent creating new objects. :/

    import Control.Arrow
    
    import Data.Map.Strict (Map)
    
    import qualified Data.Map.Strict as Map
    import qualified Data.Maybe as Maybe
    
    type StoneCache = Map Int Int
    type BlinkCache = Map Int StoneCache
    
    parse :: String -> [Int]
    parse = lines >>> head >>> words >>> map read
    
    memoizedCountSplitStones :: BlinkCache -> Int -> Int -> (Int, BlinkCache)
    memoizedCountSplitStones m 0 _ = (1, m)
    memoizedCountSplitStones m i n 
            | Maybe.isJust maybeMemoized = (Maybe.fromJust maybeMemoized, m)
            | n == 0     = do
                    let (r, rm) = memoizedCountSplitStones m (pred i) (succ n)
                    let rm' = cacheWrite rm i n r
                    (r, rm')
            | digitCount `mod` 2 == 0 = do
                    let (r1, m1) = memoizedCountSplitStones m  (pred i) firstSplit
                    let (r2, m2) = memoizedCountSplitStones m1 (pred i) secondSplit
                    let m' = cacheWrite m2 i n (r1+r2)
                    (r1 + r2, m')
            | otherwise = do
                    let (r, m') = memoizedCountSplitStones m (pred i) (n * 2024)
                    let m'' = cacheWrite m' i n r
                    (r, m'')
            where
                    secondSplit    = n `mod` (10 ^ (digitCount `div` 2))
                    firstSplit     = (n - secondSplit) `div` (10 ^ (digitCount `div` 2))
                    digitCount     = succ . floor . logBase 10 . fromIntegral $ n
                    maybeMemoized  = cacheLookup m i n
    
    foldMemoized :: Int -> (Int, BlinkCache) -> Int -> (Int, BlinkCache)
    foldMemoized i (r, m) n = (r + r2, m')
            where
                    (r2, m') = memoizedCountSplitStones m i n
    
    cacheWrite :: BlinkCache -> Int -> Int -> Int -> BlinkCache
    cacheWrite bc i n r = Map.adjust (Map.insert n r) i bc
    
    cacheLookup :: BlinkCache -> Int -> Int -> Maybe Int
    cacheLookup bc i n = do
            sc <- bc Map.!? i
            sc Map.!? n
    
    emptyCache :: BlinkCache
    emptyCache = Map.fromList [ (i, Map.empty) | i <- [1..75]]
    
    part1 = foldl (foldMemoized 25) (0, emptyCache)
            >>> fst
    part2 = foldl (foldMemoized 75) (0, emptyCache)
            >>> fst
    
    main = getContents
            >>= print
            . (part1 &&& part2)
            . parse
    
    • lwhjp
      link
      fedilink
      210 hours ago

      Some nice monadic code patterns going on there, passing the cache around! (You might want to look into the State monad if you haven’t come across it before)

      • @VegOwOtenks
        link
        English
        2
        edit-2
        6 hours ago

        Thank you for the hint, I wouldn’t have recognized it because I haven’t yet looked into it, I might try it this afternoon if I find the time, I could probably put both the Cache and the current stone count into the monad state?

        • lwhjp
          link
          fedilink
          26 hours ago

          Your code as it stands is basically State BlinkCache written out explicitly, which is I think a natural way to structure the solution. That is, the cache is the state, and the stone count is the (monadic) return value. Good luck!

  • janAkali
    link
    fedilink
    English
    2
    edit-2
    5 hours ago

    Nim

    Runtime: 30-40 ms
    I’m not very experienced with recursion and memoization, so this took me quite a while.

    Edit: slightly better version

    template splitNum(numStr: string): seq[int] =
      @[parseInt(numStr[0..<numStr.len div 2]), parseInt(numStr[numStr.len div 2..^1])]
    
    template applyRule(stone: int): seq[int] =
      if stone == 0: @[1]
      else:
        let numStr = $stone
        if numStr.len mod 2 == 0: splitNum(numStr)
        else: @[stone * 2024]
    
    proc memRule(st: int): seq[int] =
      var memo {.global.}: Table[int, seq[int]]
      if st in memo: return memo[st]
      result = st.applyRule
      memo[st] = result
    
    proc countAfter(stone: int, targetBlinks: int): int =
      var memo {.global.}: Table[(int, int), int]
      if (stone,targetBlinks) in memo: return memo[(stone,targetBlinks)]
    
      if targetBlinks == 0: return 1
      for st in memRule(stone):
        result += st.countAfter(targetBlinks - 1)
      memo[(stone,targetBlinks)] = result
    
    proc solve(input: string): AOCSolution[int, int] =
      for stone in input.split.map(parseInt):
        result.part1 += stone.countAfter(25)
        result.part2 += stone.countAfter(75)
    

    Codeberg repo

  • @[email protected]
    link
    fedilink
    211 hours ago

    C#

    public class Day11 : Solver
    {
      private long[] data;
    
      private class TreeNode(TreeNode? left, TreeNode? right, long value) {
        public TreeNode? Left = left;
        public TreeNode? Right = right;
        public long Value = value;
      }
    
      private Dictionary<(long, int), long> generation_length_cache = [];
      private Dictionary<long, TreeNode> subtree_pointers = [];
    
      public void Presolve(string input) {
        data = input.Trim().Split(" ").Select(long.Parse).ToArray();
        List<TreeNode> roots = data.Select(value => new TreeNode(null, null, value)).ToList();
        List<TreeNode> last_level = roots;
        subtree_pointers = roots.GroupBy(root => root.Value)
          .ToDictionary(grouping => grouping.Key, grouping => grouping.First());
        for (int i = 0; i < 75; i++) {
          List<TreeNode> next_level = [];
          foreach (var node in last_level) {
            long[] children = Transform(node.Value).ToArray();
            node.Left = new TreeNode(null, null, children[0]);
            if (subtree_pointers.TryAdd(node.Left.Value, node.Left)) {
              next_level.Add(node.Left);
            }
            if (children.Length <= 1) continue;
            node.Right = new TreeNode(null, null, children[1]);
            if (subtree_pointers.TryAdd(node.Right.Value, node.Right)) {
              next_level.Add(node.Right);
            }
          }
          last_level = next_level;
        }
      }
    
      public string SolveFirst() => data.Select(value => GetGenerationLength(value, 25)).Sum().ToString();
      public string SolveSecond() => data.Select(value => GetGenerationLength(value, 75)).Sum().ToString();
    
      private long GetGenerationLength(long value, int generation) {
        if (generation == 0) { return 1; }
        if (generation_length_cache.TryGetValue((value, generation), out var result)) return result;
        TreeNode cur = subtree_pointers[value];
        long sum = GetGenerationLength(cur.Left.Value, generation - 1);
        if (cur.Right is not null) {
          sum += GetGenerationLength(cur.Right.Value, generation - 1);
        }
        generation_length_cache[(value, generation)] = sum;
        return sum;
      }
    
      private IEnumerable<long> Transform(long arg) {
        if (arg == 0) return [1];
        if (arg.ToString() is { Length: var l } str && (l % 2) == 0) {
          return [int.Parse(str[..(l / 2)]), int.Parse(str[(l / 2)..])];
        }
        return [arg * 2024];
      }
    }
    
    • @[email protected]
      link
      fedilink
      12 hours ago

      I had a very similar take on this problem, but I was not caching the results of a blink for a single stone, like youre doing with subtree_pointers. I tried adding that to my solution, but it didn’t make an appreciable difference. I think that caching the lengths is really the only thing that matters.

      C#

          static object Solve(Input i, int numBlinks)
          {
              // This is a cache of the tuples of (stoneValue, blinks) to
              // the calculated count of their child stones.
              var lengthCache = new Dictionary<(long, int), long>();
              return i.InitialStones
                  .Sum(stone => CalculateUltimateLength(stone, numBlinks, lengthCache));
          }
      
          static long CalculateUltimateLength(
              long stone,
              int numBlinks,
              IDictionary<(long, int), long> lengthCache)
          {
              if (numBlinks == 0) return 1;
              
              if (lengthCache.TryGetValue((stone, numBlinks), out var length)) return length;
      
              length = Blink(stone)
                  .Sum(next => CalculateUltimateLength(next, numBlinks - 1, lengthCache));
              lengthCache[(stone, numBlinks)] = length;
              return length;
          }
      
          static long[] Blink(long stone)
          {
              if (stone == 0) return [1];
      
              var stoneText = stone.ToString();
              if (stoneText.Length % 2 == 0)
              {
                  var halfLength = stoneText.Length / 2;
                  return
                  [
                      long.Parse(stoneText.Substring(0, halfLength)),
                      long.Parse(stoneText.Substring(halfLength)),
                  ];
              }
      
              return [stone * 2024];
          }
      
  • lwhjp
    link
    fedilink
    211 hours ago

    Haskell

    Yay, mutation! Went down the route of caching the expanded lists of stones at first. Oops.

    import Data.IORef
    import Data.Map.Strict (Map)
    import Data.Map.Strict qualified as Map
    
    blink :: Int -> [Int]
    blink 0 = [1]
    blink n
      | s <- show n,
        l <- length s,
        even l =
          let (a, b) = splitAt (l `div` 2) s in map read [a, b]
      | otherwise = [n * 2024]
    
    countExpanded :: IORef (Map (Int, Int) Int) -> Int -> [Int] -> IO Int
    countExpanded _ 0 = return . length
    countExpanded cacheRef steps = fmap sum . mapM go
      where
        go n =
          let key = (n, steps)
              computed = do
                result <- countExpanded cacheRef (steps - 1) $ blink n
                modifyIORef' cacheRef (Map.insert key result)
                return result
           in readIORef cacheRef >>= maybe computed return . (Map.!? key)
    
    main = do
      input <- map read . words <$> readFile "input11"
      cache <- newIORef Map.empty
      mapM_ (\steps -> countExpanded cache steps input >>= print) [25, 75]
    
    • @VegOwOtenks
      link
      27 hours ago

      Does the IORef go upwards the recursion tree? If you modify the IORef at some depth of 15, does the calling function also receive the update, is there also a Non-IO-Ref?

      • lwhjp
        link
        fedilink
        1
        edit-2
        6 hours ago

        The IORef is like a mutable box you can stick things in, so readIORef returns whatever was last put in it (in this case using modifyIORef'). “last” makes sense here because operations are sequenced thanks to the IO monad, so yes: values get carried back up the tree to the caller. There’s also STRef for the ST monad, or I could have used the State monad which (kind of) encapsulates a single ref.