Day 13: Claw Contraption

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • @[email protected]OPM
    link
    fedilink
    126 minutes ago

    Rust

    Hardest part was parsing the input, i somehow forgot how regexes work and wasted hours.

    Learning how to do matrix stuff in rust was a nice detour as well.

    #[cfg(test)]
    mod tests {
        use nalgebra::{Matrix2, Vector2};
        use regex::Regex;
    
        fn play_game(ax: i128, ay: i128, bx: i128, by: i128, gx: i128, gy: i128) -> i128 {
            for a_press in 0..100 {
                let rx = gx - ax * a_press;
                let ry = gy - ay * a_press;
                if rx % bx == 0 && ry % by == 0 && rx / bx == ry / by {
                    return a_press * 3 + ry / by;
                }
            }
            0
        }
    
        fn play_game2(ax: i128, ay: i128, bx: i128, by: i128, gx: i128, gy: i128) -> i128 {
            // m * p = g
            // p = m' * g
            // |ax bx|.|a_press| = |gx|
            // |ay by| |b_press|   |gy|
            let m = Matrix2::new(ax as f64, bx as f64, ay as f64, by as f64);
            match m.try_inverse() {
                None => return 0,
                Some(m_inv) => {
                    let g = Vector2::new(gx as f64, gy as f64);
                    let p = m_inv * g;
                    let pa = p[0].round() as i128;
                    let pb = p[1].round() as i128;
                    if pa * ax + pb * bx == gx && pa * ay + pb * by == gy {
                        return pa * 3 + pb;
                    }
                }
            };
            0
        }
    
        #[test]
        fn day13_part1_test() {
            let input = std::fs::read_to_string("src/input/day_13.txt").unwrap();
            let re = Regex::new(r"[0-9]+").unwrap();
    
            let games = input
                .trim()
                .split("\n\n")
                .map(|line| {
                    re.captures_iter(line)
                        .map(|x| {
                            let first = x.get(0).unwrap().as_str();
                            first.parse::<i128>().unwrap()
                        })
                        .collect::<Vec<i128>>()
                })
                .collect::<Vec<Vec<i128>>>();
    
            let mut total = 0;
            for game in games {
                let cost = play_game2(game[0], game[1], game[2], game[3], game[4], game[5]);
                total += cost;
            }
            // 36870
            println!("{}", total);
        }
    
        #[test]
        fn day12_part2_test() {
            let input = std::fs::read_to_string("src/input/day_13.txt").unwrap();
            let re = Regex::new(r"[0-9]+").unwrap();
    
            let games = input
                .trim()
                .split("\n\n")
                .map(|line| {
                    re.captures_iter(line)
                        .map(|x| {
                            let first = x.get(0).unwrap().as_str();
                            first.parse::<i128>().unwrap()
                        })
                        .collect::<Vec<i128>>()
                })
                .collect::<Vec<Vec<i128>>>();
    
            let mut total = 0;
            for game in games {
                let cost = play_game2(
                    game[0],
                    game[1],
                    game[2],
                    game[3],
                    game[4] + 10000000000000,
                    game[5] + 10000000000000,
                );
                total += cost;
            }
            println!("{}", total);
        }
    }
    
  • @[email protected]
    link
    fedilink
    English
    1
    edit-2
    2 hours ago

    C

    “The cheapest way” “the fewest tokens”, that evil chap!

    I’m on a weekend trip and thought to do the puzzle in the 3h train ride but I got silly stumped on 2D line intersection*, was too stubborn to look it up, and fell asleep 🤡

    When I woke up, so did the little nugget of elementary algebra somewhere far in the back of my mind. Tonight I finally got to implementing, which was smooth sailing except for this lesson I learnt:

    int64 friends don’t let int64 friends play with float32s.

    *) on two parts:

    1. how can you capture a two-dimensional problem in a linear equation (ans: use slopes), and
    2. what unknown was I supposed to be finding? (ans: either x or y of intersection will do)
    Code
    #include "common.h"
    
    static int64_t
    score(int ax, int ay, int bx, int by, int64_t px, int64_t py)
    {
    	int64_t a,b, x;
    	double as,bs;
    
    	as = (double)ay / ax;
    	bs = (double)by / bx;
    
    	/* intersection between a (from start) and b (from end) */
    	x = (int64_t)round((px*bs - py) / (bs-as));
    
    	a = x / ax;
    	b = (px-x) / bx;
    
    	return
    	    a*ax + b*bx == px &&
    	    a*ay + b*by == py ? a*3 + b : 0;
    }
    
    int
    main(int argc, char **argv)
    {
    	int ax,ay, bx,by;
    	int64_t p1=0,p2=0, px,py;
    
    	if (argc > 1)
    		DISCARD(freopen(argv[1], "r", stdin));
    	
    	while (scanf(
    	    " Button A: X+%d, Y+%d"
    	    " Button B: X+%d, Y+%d"
    	    " Prize: X=%"SCNd64", Y=%"SCNd64,
    	    &ax, &ay, &bx, &by, &px, &py) == 6) {
    		p1 += score(ax,ay, bx,by, px,py);
    		p2 += score(ax,ay, bx,by,
    		    px + 10000000000000LL,
    		    py + 10000000000000LL);
    	}
    
    	printf("13: %"PRId64" %"PRId64"\n", p1, p2);
    	return 0;
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day13.c

  • @mykl
    link
    33 hours ago

    I have nothing. I hate Diophantine equations. That is all I have to say today.

  • @[email protected]
    link
    fedilink
    17 hours ago

    Rust

    This problem is basically a linear system, which can be solved by inverting the 2x2 matrix of button distances. I put some more detail in the comments.

    Solution
    use std::sync::LazyLock;
    
    use regex::Regex;
    
    #[derive(Debug)]
    struct Machine {
        a: (i64, i64),
        b: (i64, i64),
        prize: (i64, i64),
    }
    
    impl Machine {
        fn tokens_100(&self) -> i64 {
            for b in 0..=100 {
                for a in 0..=100 {
                    let pos = (self.a.0 * a + self.b.0 * b, self.a.1 * a + self.b.1 * b);
                    if pos == self.prize {
                        return b + 3 * a;
                    }
                }
            }
            0
        }
    
        fn tokens_inv(&self) -> i64 {
            // If [ab] is the matrix containing our two button vectors: [ a.0 b.0 ]
            //                                                          [ a.1 b.1 ]
            // then prize = [ab] * x, where x holds the number of required button presses
            // for a and b, (na, nb).
            // By inverting [ab] we get
            //
            // x = [ab]⁻¹ * prize
            let det = (self.a.0 * self.b.1) - (self.a.1 * self.b.0);
            if det == 0 {
                panic!("Irregular matrix");
            }
            let det = det as f64;
            // The matrix [ a b ] is the inverse of [ a.0 b.0 ] .
            //            [ c d ]                   [ a.1 b.1 ]
            let a = self.b.1 as f64 / det;
            let b = -self.b.0 as f64 / det;
            let c = -self.a.1 as f64 / det;
            let d = self.a.0 as f64 / det;
            // Multiply [ab] * prize to get the result
            let na = self.prize.0 as f64 * a + self.prize.1 as f64 * b;
            let nb = self.prize.0 as f64 * c + self.prize.1 as f64 * d;
    
            // Only integer solutions are valid, verify rounded results:
            let ina = na.round() as i64;
            let inb = nb.round() as i64;
            let pos = (
                self.a.0 * ina + self.b.0 * inb,
                self.a.1 * ina + self.b.1 * inb,
            );
            if pos == self.prize {
                inb + 3 * ina
            } else {
                0
            }
        }
    
        fn translate(&self, tr: i64) -> Self {
            let prize = (self.prize.0 + tr, self.prize.1 + tr);
            Machine { prize, ..*self }
        }
    }
    
    impl From<&str> for Machine {
        fn from(s: &str) -> Self {
            static RE: LazyLock<(Regex, Regex)> = LazyLock::new(|| {
                (
                    Regex::new(r"Button [AB]: X\+(\d+), Y\+(\d+)").unwrap(),
                    Regex::new(r"Prize: X=(\d+), Y=(\d+)").unwrap(),
                )
            });
            let (re_btn, re_prize) = &*RE;
            let mut caps = re_btn.captures_iter(s);
            let (_, [a0, a1]) = caps.next().unwrap().extract();
            let a = (a0.parse().unwrap(), a1.parse().unwrap());
            let (_, [b0, b1]) = caps.next().unwrap().extract();
            let b = (b0.parse().unwrap(), b1.parse().unwrap());
            let (_, [p0, p1]) = re_prize.captures(s).unwrap().extract();
            let prize = (p0.parse().unwrap(), p1.parse().unwrap());
            Machine { a, b, prize }
        }
    }
    
    fn parse(input: String) -> Vec<Machine> {
        input.split("\n\n").map(Into::into).collect()
    }
    
    fn part1(input: String) {
        let machines = parse(input);
        let sum = machines.iter().map(|m| m.tokens_100()).sum::<i64>();
        println!("{sum}");
    }
    
    const TRANSLATION: i64 = 10000000000000;
    
    fn part2(input: String) {
        let machines = parse(input);
        let sum = machines
            .iter()
            .map(|m| m.translate(TRANSLATION).tokens_inv())
            .sum::<i64>();
        println!("{sum}");
    }
    
    util::aoc_main!();
    

    Also on github

  • @[email protected]
    link
    fedilink
    English
    18 hours ago

    Haskell, 14 ms. The hardest part was the parser today. I somehow thought that the buttons could have negative values in X or Y too, so it’s a bit overcomplicated.

    import Text.ParserCombinators.ReadP
    
    int, signedInt :: ReadP Int
    int = read <$> (many1 $ choice $ map char ['0' .. '9'])
    signedInt = ($) <$> choice [id <$ char '+', negate <$ char '-'] <*> int
    
    machine :: ReadP ((Int, Int), (Int, Int), (Int, Int))
    machine = do
        string "Button A: X"
        xa <- signedInt
        string ", Y"
        ya <- signedInt
        string "\nButton B: X"
        xb <- signedInt
        string ", Y"
        yb <- signedInt
        string "\nPrize: X="
        x0 <- int
        string ", Y="
        y0 <- int
        return ((xa, ya), (xb, yb), (x0, y0))
    
    machines :: ReadP [((Int, Int), (Int, Int), (Int, Int))]
    machines = sepBy machine (string "\n\n")
    
    calc :: ((Int, Int), (Int, Int), (Int, Int)) -> Maybe (Int, Int)
    calc ((ax, ay), (bx, by), (x0, y0)) = case
            ( (x0 * by - y0 * bx) `divMod` (ax * by - ay * bx)
            , (x0 * ay - y0 * ax) `divMod` (bx * ay - by * ax)
            ) of
        ((a, 0), (b, 0)) -> Just (a, b)
        _                -> Nothing
    
    enlarge :: (a, b, (Int, Int)) -> (a, b, (Int, Int))
    enlarge (u, v, (x0, y0)) = (u, v, (10000000000000 + x0, 10000000000000 + y0))
    
    solve :: [((Int, Int), (Int, Int), (Int, Int))] -> Int
    solve ts = sum
        [ 3 * a + b
        | Just (a, b) <- map calc ts
        ]
    
    main :: IO ()
    main = do
        ts <- fst . last . readP_to_S machines <$> getContents
        mapM_ (print . solve) [ts, map enlarge ts]
    
    • @[email protected]OPM
      link
      fedilink
      132 minutes ago

      I wasted hours on the parsing, because my regex ([0-9]*) was giving me empty strings. Made me feel very dumb when I worked it out

  • @[email protected]
    link
    fedilink
    19 hours ago

    C#

    Thank goodness for high school algebra!

    using System.Diagnostics;
    using Common;
    
    namespace Day13;
    
    static class Program
    {
        static void Main()
        {
            var start = Stopwatch.GetTimestamp();
    
            var sampleInput = Input.ParseInput("sample.txt");
            var programInput = Input.ParseInput("input.txt");
    
            Console.WriteLine($"Part 1 sample: {Part1(sampleInput)}");
            Console.WriteLine($"Part 1 input: {Part1(programInput)}");
    
            Console.WriteLine($"Part 2 sample: {Part2(sampleInput)}");
            Console.WriteLine($"Part 2 input: {Part2(programInput)}");
    
            Console.WriteLine($"That took about {Stopwatch.GetElapsedTime(start)}");
        }
    
        static object Part1(Input i) => i.Machines
            .Select(m => CalculateCoins(m, 100))
            .Where(c => c > 0)
            .Sum();
    
        static object Part2(Input i) => i.Machines
            .Select(m => m with { Prize = new XYValues(
                m.Prize.X + 10000000000000,
                m.Prize.Y + 10000000000000) })
            .Select(m => CalculateCoins(m, long.MaxValue))
            .Where(c => c > 0)
            .Sum();
    
        static long CalculateCoins(Machine m, long limit)
        {
            var bBottom = (m.A.X * m.B.Y) - (m.A.Y * m.B.X);
            if (bBottom == 0) return -1;
    
            var bTop = (m.Prize.Y * m.A.X) - (m.Prize.X * m.A.Y);
            var b = bTop / bBottom;
            if ((b <= 0) || (b > limit)) return -1;
            
            var a = (m.Prize.X - (b * m.B.X)) / m.A.X;
            if ((a <= 0) || (a > limit)) return -1;
    
            var calcPrizeX = (a * m.A.X) + (b * m.B.X);
            var calcPrizeY = (a * m.A.Y) + (b * m.B.Y);
            if ((m.Prize.X != calcPrizeX) || (m.Prize.Y != calcPrizeY)) return -1;
    
            return (3 * a) + b;
        }
    }
    
    public record struct Machine(XYValues A, XYValues B, XYValues Prize);
    public record struct XYValues(long X, long Y);
    
    public class Input
    {
        private Input()
        {
        }
    
        public List<Machine> Machines { get; init; }
    
        public static Input ParseInput(string file)
        {
            var machines = new List<Machine>();
    
            var lines = File.ReadAllLines(file);
            for(int l=0; l<lines.Length; l+=4)
            {
                machines.Add(new Machine(
                    ParseXYValues(lines[l + 0]),
                    ParseXYValues(lines[l + 1]),
                    ParseXYValues(lines[l + 2])));
            }
    
            return new Input()
            {
                Machines = machines,
            };
        }
    
        private static readonly char[] XYDelimiters = ['X', 'Y', '=', '+', ',', ' '];
    
        private static XYValues ParseXYValues(string s)
        {
            var parts = s
                .Substring(s.IndexOf(':') + 1)
                .SplitAndTrim(XYDelimiters)
                .Select(long.Parse)
                .ToArray();
            
            return new XYValues(parts[0], parts[1]);
        }
    }
    
  • @[email protected]
    link
    fedilink
    111 hours ago

    C#

    public partial class Day13 : Solver
    {
      private record struct Button(int X, int Y);
      private record struct Machine(int X, int Y, Button A, Button B);
      private List<Machine> machines = [];
    
      [GeneratedRegex(@"^Button (A|B): X\+(\d+), Y\+(\d+)$")]
      private static partial Regex ButtonSpec();
    
      [GeneratedRegex(@"^Prize: X=(\d+), Y=(\d+)$")]
      private static partial Regex PrizeSpec();
    
      public void Presolve(string input) {
        var machine_specs = input.Trim().Split("\n\n").ToList();
        foreach (var spec in machine_specs) {
          var lines = spec.Split("\n").ToList();
          if (ButtonSpec().Match(lines[0]) is not { Success: true } button_a_match
            || ButtonSpec().Match(lines[1]) is not { Success: true } button_b_match
            || PrizeSpec().Match(lines[2]) is not { Success:true} prize_match) {
            throw new InvalidDataException($"parse error: ${lines}");
          }
          machines.Add(new Machine(
            int.Parse(prize_match.Groups[1].Value),
            int.Parse(prize_match.Groups[2].Value),
            new Button(int.Parse(button_a_match.Groups[2].Value), int.Parse(button_a_match.Groups[3].Value)),
            new Button(int.Parse(button_b_match.Groups[2].Value), int.Parse(button_b_match.Groups[3].Value))
            ));
        }
      }
    
      private string Solve(bool unit_conversion) {
        BigInteger total_cost = 0;
        foreach (var machine in machines) {
          long prize_x = machine.X + (unit_conversion ? 10000000000000 : 0);
          long prize_y = machine.Y + (unit_conversion ? 10000000000000 : 0);
          BigInteger det = machine.A.X * machine.B.Y - machine.B.X * machine.A.Y;
          if (det == 0) continue;
          BigInteger det_a = prize_x * machine.B.Y - machine.B.X * prize_y;
          BigInteger det_b = prize_y * machine.A.X - machine.A.Y * prize_x;
          var (a, a_rem) = BigInteger.DivRem(det_a, det);
          var (b, b_rem) = BigInteger.DivRem(det_b, det);
          if (a_rem != 0 || b_rem != 0) continue;
          total_cost += a * 3 + b;
        }
        return total_cost.ToString();
      }
    
      public string SolveFirst() => Solve(false);
      public string SolveSecond() => Solve(true);
    }
    
  • @VegOwOtenks
    link
    English
    4
    edit-2
    14 hours ago

    Haskell

    Pen and Paper solved these equations for me.

    import Control.Arrow
    
    import qualified Data.Char as Char
    import qualified Data.List as List
    import qualified Data.Maybe as Maybe
    
    
    window6 :: [Int] -> [[Int]]
    window6 [] = []
    window6 is = List.splitAt 6 
            >>> second window6
            >>> uncurry (:)
            $ is
    
    parse :: String -> [[Int]]
    parse s = window6 . map read . words . List.filter ((Char.isDigit &&& Char.isSpace) >>> uncurry (||)) $ s
    
    solveEquation (ax:ay:bx:by:tx:ty:[]) transformT
            | (aNum `mod` aDenom) /= 0   = Nothing
            | (bNum `mod` bDenom) /= 0   = Nothing
            | otherwise                  = Just (abs $ aNum `div` aDenom, abs $ bNum `div` bDenom)
            where
                    tx' = transformT tx
                    ty' = transformT ty
                    aNum   = (bx*ty')  - (by*tx')
                    aDenom = (ax*by)   - (bx*ay)
                    bNum   = (ax*ty')  - (ay*tx')
                    bDenom = (ax*by)   - (bx*ay)
    
    part1 = map (flip solveEquation id)
            >>> Maybe.catMaybes
            >>> map (first (*3))
            >>> map (uncurry (+))
            >>> sum
    part2 = map (flip solveEquation (+ 10000000000000))
            >>> Maybe.catMaybes
            >>> map (first (*3))
            >>> map (uncurry (+))
            >>> sum
    
    main = getContents
            >>= print
            . (part1 &&& part2)
            . parse
    

    (Edit: coding style)

  • @Acters
    link
    2
    edit-2
    14 hours ago

    Python

    Execution time: ~<1 millisecond (800 microseconds on my machine)

    Good old school linear algebra from middle school. we can solve this really really fast. With minimal changes from part 1!

    FastCode

    [ paste ]

    from time import perf_counter_ns
    import string
    
    def profiler(method):
        def wrapper_method(*args: any, **kwargs: any) -> any:
            start_time = perf_counter_ns()
            ret = method(*args, **kwargs)
            stop_time = perf_counter_ns() - start_time
            time_len = min(9, ((len(str(stop_time))-1)//3)*3)
            time_conversion = {9: 'seconds', 6: 'milliseconds', 3: 'microseconds', 0: 'nanoseconds'}
            print(f"Method {method.__name__} took : {stop_time / (10**time_len)} {time_conversion[time_len]}")
            return ret
    
        return wrapper_method
    
    @profiler
    def main(input_data):
        part1_total_cost = 0
        part2_total_cost = 0
        for machine in input_data:
            Ax,Ay,Bx,By,Px,Py = [ int(l[2:]) for l in machine.split() if l[-1] in string.digits ]
            y,r = divmod((Ay * Px - Ax * Py), (Ay * Bx - Ax * By))
            if r == 0:
                x = (Px - Bx * y) // Ax
                part1_total_cost += 3*x + y
            y,r = divmod((Ay * (Px+10000000000000) - Ax * (Py+10000000000000)), (Ay * Bx - Ax * By))
            if r == 0:
                x = ((Px+10000000000000) - Bx * y) // Ax
                part2_total_cost += 3*x + y
    
        return part1_total_cost,part2_total_cost
    
    if __name__ == "__main__":
        with open('input', 'r') as f:
            input_data = f.read().strip().replace(',', '').split('\n\n')
        part_one, part_two = main(input_data)
        print(f"Part 1: {part_one}\nPart 2: {part_two}")
    
    
    • @[email protected]
      link
      fedilink
      110 hours ago

      It’s interesting that you’re not checking if the solution to x is a whole number. I guess the data doesn’t contain any counterexamples.

      • @Acters
        link
        2
        edit-2
        5 hours ago

        we are solving for y first. If there is a y then x is found easily.

        (Ax)*x + (Bx)*y = Px and (Ay)*x + (By)*y = Py

        Because of Ax or Ay and Bx or By, lets pretend that they are not (A*x)*x and (A*y)*y for both. they are just names. could be rewritten as: (Aleft)*x + (Bleft)*y = Pleft and (Aright)*x + (Bright)*y = Pright

        but I will keep them short. solving for y turns into this:

        y = (Ay*Px - Ax*Py) / (Ay*Bx - Ax*By)

        if mod of 1 is equal to 0 then there is a solution. We can be confident that x is also a solution, too. Could there be an edge case? I didn’t proof it, but it works flawlessly for my solution.

        Thankfully, divmod does both division and mod of 1 at the same time.

        • @[email protected]
          link
          fedilink
          1
          edit-2
          4 hours ago

          Thank you so much for your explanation! I kind of found some clues looking up perp dot products & other vector math things, but this breaks it down very nicely.

          I implemented your solution in rust, and part 2 failed by +447,761,194,259 (this was using signed 64-bit integers, i64). When I changed it to use signed 64 bit floating-point f64 and checked that the solution for x produces a whole number it worked.

          • @Acters
            link
            12 hours ago

            Did you run my python code as is? I would hope it works for everyone. though, I am unsure what the edge cases are, then.

      • @VegOwOtenks
        link
        0
        edit-2
        8 hours ago

        They do, if the remainder returned by divmod(…) wasn’t zero then it wouldn’t be divisble

        • @Acters
          link
          15 hours ago

          you are right, we solve for y, but I am confident that solving for x after y would yield the correct result as long as y is fully divisible.

    • @[email protected]
      link
      fedilink
      110 hours ago

      This is a really excellent, clean solution! Would you mind breaking down how the piece of linear algebra works (for a shmo like me who doesn’t remember that stuff frum school heh 😅)

  • lwhjp
    link
    fedilink
    316 hours ago

    Haskell

    Whee, linear algebra! Converting between numeric types is a bit annoying in Haskell, but I’m reasonably happy with this solution.

    import Control.Monad
    import Data.Matrix qualified as M
    import Data.Maybe
    import Data.Ratio
    import Data.Vector qualified as V
    import Text.Parsec
    
    type C = (Int, Int)
    
    readInput :: String -> [(C, C, C)]
    readInput = either (error . show) id . parse (machine `sepBy` newline) ""
      where
        machine = (,,) <$> coords <*> coords <*> coords
        coords =
          (,)
            <$> (manyTill anyChar (string ": X") >> anyChar >> num)
            <*> (string ", Y" >> anyChar >> num)
            <* newline
        num = read <$> many1 digit
    
    presses :: (C, C, C) -> Maybe C
    presses ((ax, ay), (bx, by), (px, py)) =
      do
        let m = fromIntegral <$> M.fromLists [[ax, bx], [ay, by]]
        m' <- either (const Nothing) Just $ M.inverse m
        let [a, b] = M.toList $ m' * M.colVector (fromIntegral <$> V.fromList [px, py])
        guard $ denominator a == 1
        guard $ denominator b == 1
        return (numerator a, numerator b)
    
    main = do
      input <- readInput <$> readFile "input13"
      mapM_
        (print . sum . map (\(a, b) -> 3 * a + b) . mapMaybe presses)
        [ input,
          map (\(a, b, (px, py)) -> (a, b, (10000000000000 + px, 10000000000000 + py))) input
        ]
    
  • @iAvicenna
    link
    1
    edit-2
    12 hours ago

    Python

    I just threw linear algebra and float64 on this question and it stuck. Initially in order to decrease the numbers a bit (to save precision) I tried to find greatest common divisors for the coordinates of the target but in many cases it was 1, so that was that went down the drain. Luckily float64 was able to achieve precisions up to 1e-4 and that was enough to separate wheat from chaff. So in the end I did not have to use exact formulas for the inverse of the matrix though probably would be a more satisfying solution if I did.

    
    import numpy as np
    from functools import partial
    from pathlib import Path
    cwd = Path(__file__).parent
    
    def parse_input(file_path, correction):
    
      with file_path.open("r") as fp:
        instructions = fp.readlines()
    
      machine_instructions = []
      for ind in range(0,len(instructions)+1,4):
    
        mins = instructions[ind:ind+3]
        machine_instructions.append([])
        for i,s in zip(range(3),['+','+','=']):
          machine_instructions[-1].append([int(mins[i].split(',')[0].split(s)[-1]),
                                       int(mins[i].split(',')[1].split(s)[-1])])
    
        for i in range(2):
          machine_instructions[-1][-1][i] += correction
    
      return machine_instructions
    
    
    def solve(threshold, maxn, vectors):
    
      c = np.array([3, 1])
    
      M = np.concat([np.array(vectors[0])[:,None],
                     np.array(vectors[1])[:,None]],axis=1).astype(int)
    
      if np.linalg.det(M)==0:
        return np.nan
    
      Minv = np.linalg.inv(M)
      nmoves = Minv @ np.array(vectors[2])
    
      if np.any(np.abs(nmoves - np.round(nmoves))>threshold) or\
        np.any(nmoves>maxn) or np.any(nmoves<0):
          return np.nan
    
      return np.sum(c * (Minv @ np.array(vectors[2])))
    
    
    def solve_problem(file_name, correction, maxn, threshold=1e-4):
      # correction 0 or 10000000000000
      # maxn 100 or np.inf
    
      machine_instructions = parse_input(Path(cwd, file_name), correction)
    
      _solve = partial(solve, threshold, maxn)
    
      tokens = list(map(_solve, machine_instructions))
    
      return int(np.nansum(list(tokens)))