Definitely hydrogen. We need, as in require, it for various things form steel smelting to chemical feedstock, either hydrolysed on-shore or brought in via ammonia tankers, in the country it’s going to be transported via pipelines (part of the network already are getting switched over from natural gas… fun fact Germany’s network started out as a hydrogen network), and those pipelines can store three months of total energy storage (not just electricity). That’s not even including dedicated storage, that’s just high operating pressure vs. low operating pressure. Fraunhofer thinks it’s the best idea since bottled beer.
Oh yes, no argument there. We’re already using absolutely huge amounts of hydrogen that are mostly made from fossil fuels right now. Worldwide hydrogen production is responsible for more greenhouse gas emissions than the entire country of Germany. We’ll have to turn that into green hydrogen and use a ton of renewable energy for that. If we make use of surplus wind and solar, it will help a lot with stabilizing the grid.
What I was thinking of was the idea of producing hydrogen through electrolysis, storing it and later turning it back into electricity through fuel cells. And I’m not sure if that will ever be cheaper and more efficient than newer and cheaper battery technologies like sodium ion or redox flow batteries.
Cheaper for everyday (and everyseason) operation probably no, but it’s still valuable backup capacity. Differently put you want to subsidise turning hydrogen into electricity just enough that it’s there when you really need it, maybe a task for the network operators. It’s already now the case that gas plants get bought by network operators because they can’t run often enough to turn even half a profit but the network still needs them for stability, and turning natural gas plants into hydrogen plants is nearly trivial (need to exchange burner nozzles, basically, unless a complete idiot designed the plant).
Now, 50 years down the line all those gas plants might be out of commission and we’ll have fusion but in the mean time, yep there’s going to be at least the capacity to turn hydrogen into electricity.
Definitely hydrogen. We need, as in require, it for various things form steel smelting to chemical feedstock, either hydrolysed on-shore or brought in via ammonia tankers, in the country it’s going to be transported via pipelines (part of the network already are getting switched over from natural gas… fun fact Germany’s network started out as a hydrogen network), and those pipelines can store three months of total energy storage (not just electricity). That’s not even including dedicated storage, that’s just high operating pressure vs. low operating pressure. Fraunhofer thinks it’s the best idea since bottled beer.
Oh yes, no argument there. We’re already using absolutely huge amounts of hydrogen that are mostly made from fossil fuels right now. Worldwide hydrogen production is responsible for more greenhouse gas emissions than the entire country of Germany. We’ll have to turn that into green hydrogen and use a ton of renewable energy for that. If we make use of surplus wind and solar, it will help a lot with stabilizing the grid.
What I was thinking of was the idea of producing hydrogen through electrolysis, storing it and later turning it back into electricity through fuel cells. And I’m not sure if that will ever be cheaper and more efficient than newer and cheaper battery technologies like sodium ion or redox flow batteries.
Cheaper for everyday (and everyseason) operation probably no, but it’s still valuable backup capacity. Differently put you want to subsidise turning hydrogen into electricity just enough that it’s there when you really need it, maybe a task for the network operators. It’s already now the case that gas plants get bought by network operators because they can’t run often enough to turn even half a profit but the network still needs them for stability, and turning natural gas plants into hydrogen plants is nearly trivial (need to exchange burner nozzles, basically, unless a complete idiot designed the plant).
Now, 50 years down the line all those gas plants might be out of commission and we’ll have fusion but in the mean time, yep there’s going to be at least the capacity to turn hydrogen into electricity.