• @lordnikon
    link
    English
    223 months ago

    1 vote for shrinking i hope we find out one day that beyond the edge of the universe. We are inside a man that works as a Supermarket Cashier that looks a lot like a young Martin Short.

  • @[email protected]
    link
    fedilink
    213 months ago

    Expanding means that the objects (stars, galaxies and stuff) are moving further apart, not that any of them is growing on it’s own. Think of a raisin muffin. Before baking all raisins are relatively close but at the end, they moved further away. It’s not that “the other” raisins grow, they are just further away. What grow is the space between them (or dough to stay in the metaphor)

      • sp3ctr4l
        link
        fedilink
        63 months ago

        Big, huge, unfathomably large structures in the Universe, such as galaxies, are measurably expanding away from each other.

        The atoms that comprise your body are not measurably shrinking.

        We are not shrinking. Astounding large things that are very far away from us are generally getting further away from us, and other astoundingly large things.

        To further the raisin bread analogy:

        The raisins are not shrinking, the dough is expanding, making the distance between the raisins increase.

        • @ClinicallydepressedpoochieOP
          link
          -1
          edit-2
          3 months ago

          Big, huge, unfathomably large structures in the Universe

          Observed from??

          Unfathomable distances

          I don’t need to defend my position because this is not an academic discussion but it’s not absurd to say we don’t know much about the nature of the universe and if say and entire galaxy were shrinking, or raisin whatever, being a spec in that galaxy we wouldn’t observe that at an atomic level.

          • sp3ctr4l
            link
            fedilink
            5
            edit-2
            3 months ago

            So, perhaps I was too flowery with my wording here.

            Galaxies are unfathomably huge and distant in terms of a human trying to grasp their size as anything relatable, anything other than an abstract number with a huge exponent.

            We can and have and still do measure the actual distances to far away galaxies. Likewise with their size, and likewise with atomic and subatomic particles.

            We have observed, measured, and calculated that the father away galaxies are from us, the faster they are moving away from us. This concept is generally encapsulated as Hubble’s Law.

            but it’s not absurd to say we don’t know much about the nature of the universe

            This is in fact absurd to say, unless you take ‘we’ to mean something approximating 5th graders.

            Let me try another angle here:

            If we, as in, our entire galaxy, and our sense of scale and distance, were for some reason shrinking, and the rest of the universe was static…

            Why would we not observe everything outside our galaxy, or solar system, or planet, or whatever the boundary of your proposed ‘shrinking zone’ is… why would we not observe everything outside of that becoming larger?

            If this were actually happening, we could very easily measure and observe this… but we don’t.

            • @ClinicallydepressedpoochieOP
              link
              -2
              edit-2
              3 months ago

              Could we actually observe this, please tell us how you would.

              Edit: let me guess you would take your raisin and put it on a triple beam balance.

              Also, if localized shrinking did exist why would it be unique to our carve out of space?

              • sp3ctr4l
                link
                fedilink
                3
                edit-2
                2 months ago

                Could we actually observe this

                Yes. We could look at anything outside of the ‘shrinking bubble’ and measure it, and notice that it’s all becoming ‘larger’.

                We would use telescopes of various kinds to measure the apparent angular size of all things outside the bubble becoming ‘larger’ and then use trigonometry to figure out their actual size becoming ‘larger’, whilst things inside the ‘bubble’ would not.

                Edit: let me guess you would take your raisin and put it on a triple beam balance.

                No, that’s how you’d measure the mass of things that are roughly comparable to human size, not how you measure the size of things.

                Mass and size are not the same.

                We actually measure the mass of very large objects in space via a combination of many, many different measurements of different kinds, in combination with a whole bunch of physics that would require me to educate you an amount I’d want monetary compensation for, as it would likely take weeks or months or years.

                Also, if localized shrinking did exist why would it be unique to our carve out of space?

                Ok so from this comment I can infer that you are yourself not in favor of the idea that we are in some kind of shrinking bubble.

                I offered that as a thought exercise for you to illustrate that a localized shrinking bubble is an obviously nonsensical explanation.

                You don’t seem to find that a compelling explanation, so that’s good, but now I have no idea how your ‘are we just shrinking’ explanation of Hubble’s law works.

                Do you think everything in the universe is somehow shrinking, at the same rate and scale?

                If so… well, not only would that be nonsensical, but it also would not explain Hubble’s Law.

                Do you think that the universe is full of ‘shrinking bubbles’, and that the space between these ‘bubbles’ is immune to this shrinkage?

                I’d love to see an explanation of that which does not fly in the face of what we understand about the universe.

                You started this thread asking a question which has an actual and definite answer.

                You have in this thread been given simplified metaphors which illustrate this answer from various people.

                You’ve claimed this isn’t an academic debate, when the notion of the universe expanding derives from academic study, which you don’t seem to have much grasp of, as you’ve stated that ‘we don’t know much about the nature of the universe’.

                My conclusion at this point is that you are being intentionally ignorant and contrarian, demanding people explain nonsensical shrinking concepts which are not occuring and are impossible, whilst you provide absolutely no explanation of anything.

                If you want to learn why we believe the universe is ‘expanding’, go watch some astronomy 101 lectures on youtube, or take a course on brilliant, or find a book or webpage explaining this topic, or go take some community college courses or something, hell, just actually read the link I provided to Hubble’s Law on wikipedia earlier.

                • @ClinicallydepressedpoochieOP
                  link
                  -2
                  edit-2
                  2 months ago

                  Yes. We could look at anything outside of the ‘shrinking bubble’ and measure it, and notice that it’s all becoming ‘larger’.

                  … You realize you are now measuring protons that have traveled through the shrinking zone…

                  I dont demand shit of you. You’re offering this up like your some astrophysicist defending your thesis.

                  Here I’m you

                  We uh measure the angles which uh too is complicated for a pleb like you to fully grasp so now I will continue to sit in my own shit because my intellectual superiority knows no bounds.

      • @cynar
        link
        English
        33 months ago

        Shrinking would require multiple physical constants to change. Even worse, they would have to change in perfect lockstep. Any deviation would radically affect chemistry.

        • @ClinicallydepressedpoochieOP
          link
          13 months ago

          Can you describe what mechanism of shrinking you’re referring to? I assume you’re talking about some sort of compression where atoms remain the same size but get closer together.

          • @cynar
            link
            English
            23 months ago

            That wouldn’t work. You would need to change the orbital sizes, bonding forces (EM strong and weak, at least), and flow of time exactly in lockstep. Any deviation would show up in quantum mechanical experiments. None of these appear to have simple relationships to each other. It would be a huge new lump of physics to allow this to happen.

            The more likely explanation is that space has a very slight tendency to expand. It would need intergalactic (not just interstellar) distances to be detectable. We also know that (very strongly suspect) that space expanded rapidly in the very early universe. Space then collapsed into a cooler, more stable state. It was initially thought the expansion tapered off to zero, but it might be slightly positive still.

              • @cynar
                link
                English
                22 months ago

                You’re the one who made the suggestion, I’m just pointing out the problems you would need to overcome.

      • @scarabic
        link
        English
        12 months ago

        Not that I’m an expert on these things but don’t we have a limit on smallness, the Planck length, but not necessarily any limit on how far apart two objects can be? Things moving away via the expansion of spacetime would be able to continue unbounded, but shrinking not so - not without the laws of physics becoming meaningless.

        You can still say that spacetime expanding is the same as us shrinking but then you’re just into semantics and sure, you can call things whatever you like.

  • Björn Tantau
    link
    fedilink
    72 months ago

    If we were shrinking galaxies that are further away would appear to move away from us at the same rate as closer galaxies. That is not the case. The further away something is the faster it moves away from us. This is very well explained by an expanding universe. Us shrinking doesn’t fit the observations.

    • @ClinicallydepressedpoochieOP
      link
      02 months ago

      This was a challenging one. Sorry, I just enjoy enjoy going down these thought rabbit holes. So the only thing I could come up with is if there were areas of localized shrinking the light furthest away from us has a higher probability traveling through these zones.

  • @niktemadur
    link
    12 months ago

    If that were so, some parts of us would be shrinking faster than the speed of light!