Well yes… I think that’s essentially what I’m saying.
It’s debatable whether our own brains really operate any differently. For instance, if I say the word “lamppost”, your brain determines the meaning of that word based on the context of my other words around “lamppost” and also all of your past experiences that are connected with that word - because we use past context to interpret present experience.
In an abstract, nontechnical way, training a machine learning model on a corpus of data is sort of like trying to give it enough context to interpret new inputs in an expected/useful way. In the case of LLMs, it’s an attempt to link the use of words and phrases with contextual meanings so that a computer system can interact with natural human language (rather than specifically prepared and formatted language like programming).
It’s all just statistics though. The interpretation is based on ingestion of lots of contextual uses. It can’t really understand… it has nothing to understand with. All it can do is associate newly input words with generalized contextual meanings based on probabilities.
I wish you’d talked more about how we humans work. We are at the mercy of pattern recognition. Even when we try not to be.
When “you” decide to pick up an apple it’s about to be in your hand by the time your software has caught up with the hardware. Then your brain tells “you” a story about why you picked up the apple.
Well yes… I think that’s essentially what I’m saying.
It’s debatable whether our own brains really operate any differently. For instance, if I say the word “lamppost”, your brain determines the meaning of that word based on the context of my other words around “lamppost” and also all of your past experiences that are connected with that word - because we use past context to interpret present experience.
In an abstract, nontechnical way, training a machine learning model on a corpus of data is sort of like trying to give it enough context to interpret new inputs in an expected/useful way. In the case of LLMs, it’s an attempt to link the use of words and phrases with contextual meanings so that a computer system can interact with natural human language (rather than specifically prepared and formatted language like programming).
It’s all just statistics though. The interpretation is based on ingestion of lots of contextual uses. It can’t really understand… it has nothing to understand with. All it can do is associate newly input words with generalized contextual meanings based on probabilities.
I wish you’d talked more about how we humans work. We are at the mercy of pattern recognition. Even when we try not to be.
When “you” decide to pick up an apple it’s about to be in your hand by the time your software has caught up with the hardware. Then your brain tells “you” a story about why you picked up the apple.
I really don’t think that is always true. You should see me going back and forth in the kitchen trying to decide what to eat 😅